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1 EXECUTIVE SUMMARY 
 

This deliverable (D5.2) focuses on improving EU-wide and global models (i.e., CAPRI, 

GLOBIOM) that the European Commission uses for policy evaluation in the agricultural sector. 

The goal is to enhance the representation of farm-level behaviour and its impact on the 

environment and climate by linking macro-level models with micro-econometric models. The 

deliverable highlights various improvements, including harmonising production systems and 

farm typologies, calibrating behavioural parameters, representing structural changes, 

improving risk representation, addressing greenhouse gas emissions, and enhancing market 

power parameters and price transmission elasticities. 

 

Overall, this deliverable documents technical adjustments to the MIND STEP toolbox, 

enabling better policy evaluation, identification of policy options, scenario development, and 

assessment of their impact on European agricultural production systems. The improvements 

aim to enhance the accuracy and relevance of models by incorporating farm-level data, 

improving decision-making representation, and addressing key factors such as risk, adoption 

of new technologies, and market dynamics. 
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2 INTRODUCTION 
Agricultural land management has a direct impact on the environment and climate. In order 

to assess specific agricultural policy instruments and their impact on farm business and the 

agricultural sector in general, these models need to be enhanced by the improved 

representation of individual decision-makers behaviour. This deliverable (D5.2) focuses on 

improving current EU-wide and global models used at the European Commission through 

aspects such as risk or structural change behaviour, building on integrating the tools 

developed in WP3 and WP4, focussing on the individual farmer and on interactions among 

farmers and within the supply chain, respectively. Specifically, it reports upon the 

improvements made in WP5 following the harmonisation of production systems, sectors, and 

farm types based on the MIND STEP-data framework developed in WP2. Moreover, it presents 

an improved representation of individual decision-making in macro-scale models, improved 

elasticities of transformation/impacts on productivity coefficients, improved elasticities of 

substitution/transformation between land uses, improved risk representation, enhanced 

adoption of mitigation technologies, and improved market power parameters and price 

transmission elasticities. 

 

 

Figure 1 Technical innovations of this deliverable in the MIND STEP toolbox (adapted from D5.1). 
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Overall, this deliverable presents the necessary technical adjustments to the MIND STEP 

modelling tools for the policy evaluation in Task 6.4, which aims to identify policy options, 

develop coherent scenarios, and assess their impact on European agricultural production 

systems. Figure 1 contains an overview of the main improvements and innovations of this 

deliverable in the MIND STEP toolbox. The main work areas are highlighted in red. The work 

within Task 5.2 focused on improving existing models and the bottom-up connection of single 

farm (and farm interaction) models. This includes establishing clear links to the models in WP3 

(throughout sections 3 and 4) and WP4 (sections 6 and 7). 

 

This deliverable is structured along the main subtasks of the work package (WP): 

 

• Section 3 (Task 5.2.1) focuses on harmonising production systems and farm typologies 

within the MIND STEP model toolbox. The harmonisation focuses on the crop and 

livestock sectors. The objective is to enhance the representation of farm types 

specified in the GLOBIOM and MAGNET models and to thus align these two models 

with the ones developed in WP3 and WP4. While GLOBIOM already operates at a high 

spatial resolution and differentiates alternative production systems for crops and 

livestock to ensure seamless interfacing with the individual decision-making models, it 

is necessary to review and refine the production system and sector classification, as 

well as parameterisation to accurately reflect the farm types identified in the newly 

developed models. For MAGNET, this required a split of animal herds as stock from 

capital for improved linkages to IDM models explicitly including the substitution 

between labour, capital and land. To accomplish this, the modelling teams relied on, 

among other things, the well-established FADN database. 

• Section 4 (Task 5.2.2) deals with calibrating behavioural parameters for the choice of 

agricultural output and input levels and their substitution for macro-level models, 

specifically GLOBIOM. The micro econometric models of crop and livestock production 

decisions developed in Task 3.4 are used as input to macro-level models. Within 

GLOBIOM, parameters entering land allocation equations (elasticities of 

substitution/transformation between land uses) are improved, coupled with 

parameters characterising crop management. This section outlines the improvements 

to GLOBIOM by first aligning GLOBIOM’s database with an explicit representation of 

land-use change. Second, bottom-up linkages between farm-level models and 

GLOBIOM are established by linking observed farm-level crop and crop-management 

changes to GLOBIOM’s representation of technological change. Finally, a validation 

tool, as well as a statistical framework to link econometric model estimates (such as 

those produced by INRAE in Task 3.4) to GLOBIOM is introduced. 

• Section 5 (Task 5.2.3) focuses on the representation of structural change in current 

models. The current EU/global models represent the farm structure implicitly (CAPRI, 
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MAGNET), and some of them more or less explicitly (IFM-CAP, GLOBIOM), and the aim 

is to incorporate the influence of structural change and related land market 

developments on the supply side response of the agricultural sector. 

• Section 6 (Task 5.2.4) aims to improve the risk representation in current macro-level 

models, specifically on the example of GLOBIOM. The impact of farmers' risk attitudes 

on production decisions is explored by putting forward a framework to integrate the 

findings from Tasks 3.5 and 4.4 in GLOBIOM. The aim is to examine the impact of 

climate change, particularly through increased climate variability, on the agricultural 

sector by making changes in elasticities or cost markups in the current large-scale 

models.  

• Section 7 (Task 5.2.5) focuses on enhancing the macro-level models to make them fit 

to support policy assessments related to the urgent need to mitigate greenhouse gas 

(GHG) emissions in the agricultural sector within the framework of the European Green 

Deal and the European Climate Law. Economic modelling plays a crucial role in 

evaluating climate change mitigation strategies. Micro-level models, such as single-

farm level models, provide detailed insights into specific mitigation measures, while 

macro-level models offer a broader perspective on cost-efficiency and mitigation 

potential. However, macro-models often lack consistent and region-specific data on 

abatement costs, leading to the omission of important measures. To address this, the 

linkage of FarmDyn with GLOBIOM and MAGNET allows for the incorporation of farm-

level data and country-specific factors, enabling more accurate assessments of the 

abatement potential and costs of the agricultural sector. 

• Section 8 (Task 5.2.6) focuses on enhancing the market power parameters and price 

transmission elasticities in existing models, specifically CAPRI and MAGNET. This 

section builds upon the models developed in Task 4.4, aimed at improving the 

parameterisation of CAPRI and MAGNET by incorporating conjectural elasticities and 

price transmission elasticities at a disaggregated product level. While Task 4.4 is limited 

to a few supply chains, this section provides a concept for the potential of this 

approach.  

The final section concludes. 
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3 HARMONISATION OF PRODUCTION SYSTEM, 
SECTOR, AND FARM TYPE 

This section focuses on harmonising production systems and farm typologies within the MIND 

STEP model toolbox. The harmonisation focuses on the crop and livestock sectors. The 

objective is to enhance the representation of farm types specified in the GLOBIOM and 

MAGNET models and to thus better align these two models with the ones developed in WP3 

and WP4.  

 

While GLOBIOM already operates at a high spatial resolution and differentiates alternative 

production systems for crops and livestock to ensure seamless interfacing with the individual 

decision-making models, it is necessary to review and refine the production system and sector 

classification, as well as parameterisation to accurately reflect the farm types identified in the 

newly developed models.  

 

The novelty of the work presented in this chapter is the integration of the FALMCO (Forestry 

and Agricultural Land-use and Management COsting) module in GLOBIOM. FALMCO is a 

costing module to estimate and allocate production costs associated with diverse land uses 

across multiple management dimensions. On the one hand, top-down econometric and 

statistical techniques are applied to the farm-level FADN data to classify farms’ management 

systems and estimate the associated production costs. On the other hand, in regions where 

data is scarce or lacking, a bottom-up engineering-descriptive approach is employed, using 

open-source production data to quantify input use and associated costs, which are then 

extrapolated to these data-scarce regions. The overall aim of the FALMCO module is to 

establish and publish an open-source database of production associated with diverse land use 

classes and management and input use intensities. In Subsections 3.1 and 3.2, we present the 

main methods behind the FALMCO module, especially how production costs associated with 

crop farming in the EU are estimated. Subsection 3.3 established a link between the FALMCO 

module and WP3 by comparing cost estimates to the micro-econometric model developed 

there. 

 

The novel contribution to MAGNET is a split of animal herds as stock from the capital for 

improved linkages to IDM models explicitly including the substitution between labour, capital 

and land. To accomplish this, the modelling teams relied on, among other things, the well-

established database. 

 

The following subsections delve into the specific subtasks and objectives of this harmonization 

effort, including the improvement of crop sector and production system classification for 

GLOBIOM, estimation and validation of input-output coefficients using national datasets, 
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parameterisation of GLOBIOM with validated cost estimates, and the enhanced livestock 

sector classification for MAGNET. 

3.1 An improved management system classification of the EU crop sector for 
the macro-level model GLOBIOM 

3.1.1 Introduction 

An important distinction in farming systems is the management practices associated with 

producing crops, livestock, and forests. These management differences are reflected in the 

variations in the intensity of input use, the nature of field operations, and the production costs 

associated with the management systems. Therefore, this subtask aims to classify and 

parameterise production systems, creating a more straightforward interface of the larger-

scale market models (e.g., GLOBIOM model) with other IDM models developed in WP3 and 

WP4. In the GLOBIOM model, this translates to classifying the management systems 

associated with crop farming in the EU at the NUTS 2 spatial resolution. The FADN database is 

used to classify the production of major crops to obtain an accurate representation of the 

management systems related to crop farming in the EU. Specifically, to model how intensive 

inputs are applied.  

 

The starting point defines the old management systems (sometimes referred to as production 

systems)  adopted from SPAM 2000 based on the Global Agroecological Zones (GAEZ) 

(IIASA/FAO, 2012) and Spatial Production Allocation Model (SPAM) methodologies (Wood-

Sichra et al., 2016; You et al., 2014; You and Wood, 2006). Building on these works, the 

GLOBIOM model characterises and distinguishes crop production by four management 

systems based on water supply conditions (irrigated vs. rainfed) and input use (low vs. high) 

globally. Therefore, the management systems are: 

- Rainfed - subsistence (SS): Under this system, crop producers are typically small-

scale and produce mainly for their own household consumption. Here, production 

is rainfed with low inputs. This type of management characterises traditional 

production techniques, less mechanisation, and little to no fertilisers and crop 

protection or application. This management system is rare in the EU. This type of 

system cannot be identified in the FADN as the FADN includes agricultural 

holdings considered commercial.  

- Rainfed - low input (LI): Rainfed low input applies traditional seed varieties 

without (or with little) application of fertilisers or plant protection. This system 

uses traditional tools and is typically labour-intensive. In parts of the EU (i.e., 

Romania), this translates to less machinery use, lower average productivity, 

poorly technically equipped and limited access to credit, among others (European 

Commission, 2022). 
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- Rainfed – high-input (HI): In this system, crop production is rainfed and uses high-

yield varieties, optimal application of fertilisers and crop protection, and may be 

fully mechanised. 

- Irrigated - high input (IR): Here, crop production areas are typically equipped for 

irrigation, and crop production uses modern high-yield seed varieties, optimal 

fertiliser, and crop protection applications. In this analysis, this translate to HI 

farms with irrigated area.  

 

Generally, different crop management practices often result in different yields, associated 

production costs, and gross margins. The GLOBIOM model accounts for these management 

systems relating to production (i.e., fertiliser use and water use), production costs, and output 

(i.e., yield) of crops cultivated. However, as Wood-Sichra et al. (2016) noted, global datasets 

on management system shares for each crop were largely absent. Therefore, the SPAM model 

relied extensively on expert judgment, making the classification more subjective and 

qualitative. In this task, the management systems with respect to the EU crop sector are re-

defined using the EU farm intensity indicator. This approach has multiple benefits. First, it 

applies the harmonised EU FADN survey data, the reference for most relevant micro-

econometric models. Second, it allows for incorporating the estimates of these micro-

econometric models into GLOBIOM. Third, although the SPAM model has a global 

representation, the present approach presented here focuses on EU management systems 

and highlights differences in crop production based on a standardised EU indicator, thus 

capturing variations across MS in a more standardised manner. 

 

The remainder of this section is presented as follows: the following section presents the 

conceptual framework, which describes the farm intensity methodology, how it is applied in 

this task, and the data used. The subsequent sections present the main findings and 

conclusion remarks. 

3.1.2 Conceptual Framework 

EU farms are heterogeneous regarding production intensity and practices. To model this 

heterogeneity among crop producers in GLOBIOM, it is essential to associate management 

systems with individual crops. However, in the FADN data, input and resource use are 

reported at the farm level. For example, the FADN data presents information on the total 

fertiliser expenditure of the farm, with no additional information on how farms apply these 

fertilisers among crops produced on the farm. Therefore, we made the following three key 

assumptions to parameterise and classify crop production under the management systems. 

First, rather than directly classifying individual crops under the different management 

systems, we categorise the farms' overall production instead. Here, we assume that, e.g., a 

high-input farm will typically produce all crops under this system. Second, based on the 

definition of the subsistence system and the criteria for sampling farms in the FADN (i.e., 
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considering only commercial agricultural holdings), there is no subsistence farming in the new 

re-classification among the EU crop producers. Third, as EU farms are typically diverse in their 

production, the clustering analysis focuses on farms with crop farming as their main 

production.  

 

Based on these assumptions, we apply the FADN data and cluster analysis to classify farms 

into rainfed low- and high-input and irrigated management systems. Although several 

econometric methods persist for cluster analysis, we use the more straightforward and 

consistent EU-based farming intensity indicator (indicator C33) from the agri-environmental 

indicators jointly developed by the Directorate-General for Agriculture and Rural 

Development (DG AGRI), the Directorate-General for Environment (DG ENV), Eurostat, the 

Joint Research Centre (JRC), the European Environment Agency (EEA), the Directorate-General 

for Health and Food Safety (DG SANTE) and, the Directorate-General for Climate Action (DG 

CLIMA). This method uses the readily available FADN data to classify farms into low, mid, and 

high intensities based on fertiliser, crop protection, and feed use in two steps1.  

 

However, to make it applicable to our analysis, which focuses on crop farms, we adapted this 

clustering methodology by using crop-specific costs. In other words, crop-specific costs such 

as fertiliser and plant protection expenditures per hectare were used as a proxy for clustering 

the input-use intensity of crop farms. Within this methodology, farm input intensity is defined 

as the level of inputs the farm uses per unit of production factor (i.e., land). Figure 2 presents 

the modelling framework.  

 

The starting point of this analysis is the FADN data, which uses harmonised bookkeeping 

principles to collect financial, economic, and physical farm-level data for a representative 

sample of farms across the EU. Farms in the FADN sample are stratified according to 

production orientation (i.e., farm type), farm economic size, and farm topography. The 

empirical analysis applies an unbalanced panel of crop farms from the FADN database 

covering the EU 27 Member States (MS) and the UK from 2007 to 2018. To capture variations 

in management between different farm types related to crop farming (i.e., specialised vs. 

mixed), we use the EU TF 14 classification. For the specialised crop farming systems, we focus 

on the cereal, oilseeds, and protein crop farms (TF15) and ii) other field crop farms (TF 16). 

For the mixed crop farming systems, we focus on: i) mixed crop farms (TF60) and ii) mixed 

crop and livestock farms (TF80)2.  

 

 

1 More on the methodology as applied by the European Commission can be found here. 

2 Farms in the FADN are stratified based on their standard output according to production orientation (i.e., farm 

type), farm economic size (measured in standard output-SO ), and farm topography. 

https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC33.html
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Table 1 presents a distribution of our utilised data per farm type, comprising over 75000 farms 

covering the period from 2007-2018. Farms are, on average, seven years in the sample. 

Although the sample size increases across most farm types over time, mixed crop farms show 

an opposite trend. The majority of sampled farms are classified as specialised crop farms (i.e., 

COP or other specialised field crop farms), representing over 70% of the sample. Mixed 

cropping systems, on the other hand, were the least common production orientation. The 

data distribution per member state (MS) presented in Table 2 shows that the largest share of 

sampled crop farms are concentrated in Poland and Italy, representing over 25% of the 

sample. Conversely, Luxembourg and Ireland had the least number of crop farms in the 

sample. 

 

 

Figure 2 A modelling framework for harmonising management systems of crop production. 

 

The next step focuses on the clustering analysis based on input use. As input 

volumes/quantities are not reported in the FADN, a necessary step is to create a proxy for 

input quantities used per hectare of utilised agricultural area (UAA). We divide input 

expenditures per hectare by the input price index for the year and country in question, with 

2010 as the base year. Specifically, the input used is expressed in constant input prices per ha. 

Therefore, fertiliser expenditure is divided by the country and year-specific fertiliser price 

index provided by Eurostat to estimate the volume used. Similarly, plant protection 

expenditure is converted into a volume measure by dividing it by the plant protection price 

index. This approach accounts for inflation and price fluctuations, thus reflecting the trend in 

the volume of inputs used. 

Table 1 Distribution of farms per farm type. 
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TF14 Number of farms 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

15 27,498 8,393 9,331 10,746 11,790 12,136 12,983 13,786 12,930 12,838 13,220 13,426 13,396 

16 22,731 8,241 7,386 7,685 7,876 8,213 8,325 8,533 8,355 8,141 8,480 8,890 8,864 

60 9,994 3,110 2,690 2,832 2,933 2,829 2,958 3,097 2,810 2,701 2,745 2,757 2,682 

80 15,176 3,830 4,008 4,623 4,422 4,376 4,774 4,938 4,784 4,622 4,673 4,753 4,443 

Total 75,399 23,574 23,415 25,886 27,021 27,554 29,040 30,354 28,879 28,302 29,118 29,826 29,385 

 

Once the farm-specific input volumes have been estimated, the bivariate ranking method is 

employed to categorise farms into farming intensities. Here, a rank is assigned using the 

fertiliser and crop protection per ha values calculated in the previous step. Ideally, the UAA 

distribution by the ranked input intensity can be calculated per various geographical levels 

(EU, MS, NUTS) for a specific reference year. As the input intensity indicator analysis in the 

present study aims to provide insights into EU farms in general, we classify farms based on the 

EU-wide quantiles, with 2010 as the reference year. In other words, to compare farms across 

the EU, a consistent indicator of intensity (i.e., cutoff points of the quantiles) is applied rather 

than a member-state-specific quantile. It is important to note that the cut-off values are 

flexible and represent a reference value in 2010. This changes depending on the reference 

period. With this reference value, we can assess the development of farms’ input use intensity 

over time.  

Table 2 Distribution of farms per member state. 
FADN 
country 
codes 

MS No. of 
farms 

No. of 
obs. 

Per 
cent 

FADN 
country 
codes 

MS No. of 
farms 

No. of 
obs. 

Per 
cent 

BEL Belgium 486 2,565 0.77 LTU Lithuania 2,192 7,620 2.29 

BGR Bulgaria 2,707 11,508 3.46 LUX Luxembourg 98 388 0.12 

CYP Cyprus 506 1,741 0.52 LVA Latvia 999 5,309 1.60 

CZE Czech 
Republic 

1,663 8,914 2.68 MLT Malta 267 957 0.29 

DAN Denmark 2,296 6,652 2.00 NED The 
Netherlands 

426 2,744 0.83 

DEU Germany 6,644 31,249 9.40 OST Austria 824 5,211 1.57 

ELL Greece 3,896 22,520 6.78 POL Poland 12,432 54,072 16.27 

ESP Spain 5,192 30,406 9.15 POR Portugal 907 3,776 1.14 

EST Estonia 575 3,004 0.90 ROU Romania 8,347 23,852 7.18 

FRA France 4,798 27,941 8.41 SUO Finland 497 3,200 0.96 

HRV Croatia 763 2,642 0.79 SVE Sweden 516 3,009 0.91 

HUN Hungary 2,096 13,586 4.09 SVK Slovakia 775 4,250 1.28 

IRE Ireland 193 1,090 0.33 SVN Slovenia 415 1,465 0.44 

ITA Italy 13,094 43,419 13.06 UKI United 
Kingdom 

1,795 9,264 2.79 

     Total  75399 332,354 100.00 
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Based on this, three classes of intensity (low, high, irrigated) are defined, corresponding to the 

input use intensity in the 33rd and the 66th UAA quantiles. A farm is classified as low intensity 

if its cost-specific input level is less than or equal to the intensity value associated with the 

33rd quantile of UAA. On the other hand, a high-intensity farm has an intensity value above 

the 66th quantile of UAA. Therefore, a farm is classified as low-input if its input level is below 

or equal to € 142.11/ha and high-input greater or equal to €273.56/ha. We define a medium-

intensity farm between the 33rd and 66th quantiles to ensure a clear input use delineation 

between the low and high intensities. The idea is to clearly distinguish between low input (i.e., 

levels below the 33rd quantile) and high input (i.e., levels above the 66th quantile). 

 

The last category focuses on high-input irrigated crop management systems. We classify these 

as farms with high input levels (i.e., greater than €273.56/ha) and irrigated areas. Categorising 

irrigated farm systems presented three interesting features. First, there is a limited number 

of irrigated farms in the sample. Only about 23% of the total sampled farms reported any 

irrigated area. Second, our a priori expectation that irrigated farms are managed as high input 

was only met partially. In other words, approximately 53% of farms with irrigated areas were 

classified as high input. For consistency, only farms categorised as high-input with an irrigated 

area are classified as high-input irrigated. This implies that farms with irrigated areas classified 

as low input are still considered under the low input system class, as the irrigated management 

system class aims to capture high input use with partial or full irrigation.  

 

Third, some countries reported no irrigated area (e.g., Germany, Luxembourg, and Ireland), 

although Eurostat maps show irrigated/irrigable areas. This could point to missing data. To 

account for this, we used the average EU irrigated farm per year to calculate a measure of 

irrigation technology for these countries. This corresponds to crop-specific costs greater or 

equal to €655.65/ha. Based on this, the irrigated management system in these countries was 

assigned.  

3.1.3 Key findings  

3.1.3.1 Temporal dynamics and spatial distribution of management systems 

The results show that about half of the sampled farms are classified under the low-input 

management system. Farms classified as high input and irrigated systems constitute 32% and 

19% of the sample, respectively. One of our aims is to investigate whether farming intensity 

is homogeneous across the EU and over time. In other words, are specific management 

systems concentrated in certain parts of the EU? To understand these dynamics and patterns 

spatially and over time, we split the study period into three main aggregate periods: i) 2007 – 

2009 (labelled initial), ii) 2010 – 2014 (labelled mid), and iii) 2015 – 2018 (labelled final).  
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Figure 3 presents the shares in total UAA of management systems across the EU over the three 

periods. Figure 3 merely depicts the share of farming systems and does not reflect how much 

the high-input or low-input farming area has increased. For example, the UAA of high input or 

irrigated farming might have increased over the observed period. Still, the share of high-input 

would decrease if this is accompanied by a proportionally higher increase in low-input areas. 

As expected, the results show that farm intensity and management vary across the EU. A larger 

share of low-input farms is concentrated among Northern countries (i.e., Sweden and 

Finland), above the 75th percentile. Furthermore, in southern (i.e., Spain, France) and eastern 

Europe (i.e., Romania, Bulgaria), we observe a large proportion of low-input farms above the 

50th percentile. As expected, high-input farms are concentrated in central and western 

Europe.  

 

The irrigated management system is concentrated in Central Europe. The shares are highest 

in Germany, Italy, and Greece. There is a minimum concentration of irrigation farm systems in 

northern Europe, and this trend has remained consistent over time. In Germany, as initially 

stated, irrigated area is not reported and needs to be extrapolated. The overly high shares of 

irrigated areas in Germany could indicate an overestimation in the extrapolation step. Hence, 

results need to be cautiously interpreted. 

 

Regarding the temporal dynamics of the management systems, we observe that the share of 

low-intensity farming has increased in most Eastern European countries. Most apparent is the 

shift in production from high-input to low-input management systems. This results in a 

decrease in the share of high-input systems in Eastern Europe over time. Specifically, farm 

intensity seems to be more or less split in the initial period between low-input and high-input 

systems. However, toward the final period, the relative share of low-input systems has 

increased. This effect is predominant in Poland, Romania, and Bulgaria.  

 

Conversely, farms in northern Europe shifted towards high-input systems over time. A general 

trend observed is the increased share of irrigated farm systems over time, particularly among 

southern EU and Mediterranean countries (i.e., France, Greece, Spain, and Portugal). 

However, the patterns of irrigated farm systems remain unchanged for most of the EU. 
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Figure 3 Share of management systems across the EU (spatial) over time (temporal). 

 

3.1.3.2 Management system patterns across farm typologies 

Another interesting aspect of the analysis is the distinction in farming intensities across farm 

typologies. Figure 4 compares the share of management systems across crop farm typologies 

across the different EU member states. Management systems are different in countries and 

types. While some farm types are managed entirely by a specific farming intensity, others are 
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more diverse. For example, specialised COP farms in Belgium, Luxembourg, and the 

Netherlands are almost entirely managed as high-input systems, while in Bulgaria and 

Romania, they are primarily low-input. Apart from Belgium, Malta, and the Netherlands, 

mixed crops and livestock farms (TF80) are predominately managed as low-input systems. In 

most countries, the shares are above 50%. This is unsurprising and could point to much less 

crop-specific input use among mixed crop and livestock farms, although this pattern is 

dissimilar for mixed crop farms. 

 

A plausible explanation could be that as mixed farms typically have a larger share of 

grasslands, this implies lesser use of chemical fertilisers in many countries. This is particularly 

true if farms apply more manure instead of chemical fertilisers. Thus, they need less chemical 

fertiliser, although the N-fertilizer input use and equivalent yields are high. Therefore, an 

important component that still needs to be resolved is how to distinguish these from low-

input farms and classify them appropriately as high-input, as they will not necessarily be low-

input simply because they substitute manure for fertilisers. 

 

Specialist field (TF16) and mixed crop farms (TF60) are vastly diverse across the EU, with all 

management systems represented to some extent. Across the EU, all the management 

systems are observed across the different farm typologies. However, in some countries, 

irrigated systems are more predominant across the different farm typologies (i.e., Malta and 

Luxembourg). At the same time, others are predominantly low-input across farm types (i.e., 

Romania and Lithuania). 



 
D5.2 REPORT ON IMPROVEMENTS TO THE CURRENT EU AND GLOBAL MODELS  

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

 
20 

 

 

 
Figure 4 Share of management system patterns across the EU’s crop farm typologies. 
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3.1.3.3 FADN-SPAM management systems comparison and dynamics: Lessons learnt 

Cropland shares under different management systems across the EU 

Given that this analysis is a stepping stone to improving the producer-specific heterogeneity 

in the GLOBIOM model, we assess the fit of the FADN-based management system definition 

to the SPAM model used for management system classification in GLOBIOM 3. We evaluate 

this in three dimensions. First, the distribution of cropland shares managed under the 

different management systems is compared across the EU. This evaluates whether the 

definitions and approximation of farming intensities are consistent. An important 

consideration is that in SPAM, crop management systems are defined according to the 

activity/crop, while in the FADN-based approach applied here, they are defined per farm. 

 

Figure 5 compares the distribution of cropland shares under different management systems 

based on the FADN approach developed in this study and the SPAM model in the initial period. 

We compare the development of cropland management spatially and temporally. Between 

the 2000 and 2020 periods, we do not observe much change in the cropland management at 

the NUTS2 level in both GLOBIOM and the present FADN approach. In aggregate terms, the 

share of cropland managed under the different systems remained relatively constant over 

time. In terms of management system representation, we find that the irrigated management 

system is the most consistent between the two approaches, even when disregarding the 

interpolated irrigated cost data for Germany, Luxembourg, and Ireland. Particularly for most 

of the EU, the shares of cropland under the irrigated system are similar. Slight differences are 

observed for central EU (i.e., Germany, Belgium, France) and parts of southern EU (i.e., 

Greece), where the FADN approach estimates slightly higher shares of irrigated croplands.  

 

Regarding high-input managed croplands, we observe fairly consistent and similar shares 

(ranging between 75-100%) in northern France, the Netherlands, Belgium, the UK, Ireland, 

Denmark, and Poland. The most discrepancies are observed in the north and south, where 

SPAM data reports almost 100% shares of high input systems in Sweden, Finland, and Greece, 

and FADN reports range between 25-50%. Furthermore, in SPAM, almost no low-input 

croplands are reported in the EU. Nearly all EU croplands were managed as high input except 

for a few shares reported in Italy, Romania, and Latvia. In contrast, the FADN method reports 

large shares of low-input managed croplands in northern EU (i.e., parts of Finland and Sweden) 

and eastern EU (i.e., Hungary, Bulgaria, and Poland). 

 

 

3 In GLOBIOM harvested areas are based on FAOSTAT statistics but spatially allocated using data from 
the Spatial Production Allocation Model (SPAM), see You and Wood (2006). 
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Figure 5 Cropland distribution in the EU per management system: A SPAM-FADN comparison (initial 
period). 
 

Selected crop shares under different management systems across the EU 

The second dimension is an extension of the share of cropland under the different 

management systems over selected crops. Here, we compare the percentages of cropland 

producing major crops under different management systems. Although over 18 crops are 

reported in GLOBIOM and covered in our analysis, we present results for two main crops 

produced in the EU to explore and illustrate this comparison due to the lack of space. We focus 

on two cereal crops (i.e., wheat and spelt and barley). Figure 6 presents the GLOBIOM-FADN 

comparison of cropland shares for wheat and barley production in the EU per management 

system. The results are presented as follows: 
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Figure 6 SPAM-FADN comparison of barley and wheat cropland shares in the EU per management system (initial period). 
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Wheat 

Wheat is produced in almost all EU countries. As expected, the distribution of management 

systems is significantly different between SPAM and FADN. EU wheat production is 

predominately rainfed, with slight shares (under 20%) of irrigated wheat reported in parts of 

the EU. The majority of rainfed wheat production is largely cultivated under high-input 

systems. This is concentrated in the central and western EU (i.e., the UK, Ireland, France, 

Belgium, and Poland). We observe varying percentages of low-input systems across the EU, 

particularly in Eastern EU and parts of Sweden.  

 

Barley 

Similar to wheat production, there is a contradiction in the distribution of barley production 

systems under both approaches. However, we observe higher shares of low-input barley 

production in parts of northern and southern EU countries (i.e., Finland, Sweden, Spain, and 

Italy.). High-input barley production is concentrated in central EU and parts of northern EU 

(i.e., the UK and Ireland). We observe almost no irrigated barley production in the EU. 

 

3.1.4 Concluding remarks 

Understanding how farmers produce crops and how farm resources are deployed in the fields 

significantly impacts yields, productivity, profitability, and overall performance of farms. 

Large-scale sectoral and economic models (i.e., GLOBIOM) differentiate these management 

systems to explore the evolution of land use over time and the competitiveness of intensive 

and extensive production systems in terms of meeting demand in the agricultural and forestry 

sectors, the associated production costs differentiated by these management systems and 

how this translates in gross margins across space (i.e., different land uses, management, and 

regions). 

 

This subsubsection discussed the typology for the novel GLOBIOM costing module FALMCO, 

which allows for scenarios of varying input costs in GLOBIOM. A new typology was necessary 

to establish the linkage of GLOBIOM costs to observed farm-level FADN data, which is used to 

parametrize the costing module (see the next subsubsection for details). 

 

To accomplish this, it was necessary to ensure that crop production distribution reported in 

FADN can be mapped to GLOBIOM’s production quantities and is comparable to them. In 

GLOBIOM, crop data and statistics used are obtained from FAOSTAT. Given that FAOSTAT 

reports country-level production without considering the management systems, the 

distribution of crop production and management systems applied in the GLOBIOM model was 
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taken from the IFPRI SPAM model (Wood-Sichra et al., 2016; You and Wood, 2006) for the 

base year, 2000.  

 

Based on a modified version of DG-AGRI’s farm intensity indicator, we estimated the 

management systems associated with crop production using the FADN data to stay close to 

the SPAM model definitions. This harmonization step would be crucial for estimating activity 

and management-specific production costs in the subsequent section. Although not covered 

in this subtask, a potential expansion could be replacing the SPAM management classification 

in GLOBIOM with classifications estimated here. However, ensuring consistency in applying 

this EU-based management classification globally will be necessary. Would it be a better 

reflection of global cropping production patterns? Alternatively, management shares per 

NUTS 2 regions could be used to update the SPAM model for the EU. 

 

Two main features of the analysis need to be clarified as part of examining cropping systems 

in this subtask. First, the comparison between FADN and SPAM concerns the global version of 

GLOBIOM and not the GLOBIOM-EU version4, often used in EU policy impact assessments. This 

choice was made because the crop systems representation in the global version is closer to 

the classification we wanted to develop here. Second, although the systems are labelled HI, 

the yields and input use are harmonized at the country level. Thus, the input use and yields 

would, depending on the shares in the country, correspond more to a medium or low input 

system, albeit the label.  

 

The results show that farm management systems vary across the EU, with a larger share of 

low-input farms concentrated among northern (i.e., Sweden and Finland) and southern (i.e., 

Spain, France) and eastern EU member states (i.e., Romania, Bulgaria), while high-input farms 

are concentrated in central and western Europe. The irrigated management system is 

concentrated in Central Europe. Regarding the temporal dynamics of the management 

systems, we observe that Eastern European countries showed the most evolution in farming 

intensity. Most apparent is the shift in production from high-input to low-input management 

systems over time. A general trend observed is the increased share of irrigated farm systems 

over time, particularly among southern EU and Mediterranean countries. Overall, the biggest 

discrepancy between SPAM and FADN-based classification is among high-input systems. The 

 

4 The global version of GLOBIOM focuses on the major food production crops and is used in the context 
of global assesment. This version was used within MIND STEP to focus on global spillovers of EU policies 
and trade linkages. Note, that this is not the EU version of GLOBIOM which was used for policy 
assessments in the EU and thus includes additinal managment systems relevant for the EU (i.e., tillage 
practicies and crop rotations), as well as a NUTS region specific resolution.  
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SPAM model reports larger shares of high-input crop production in northern EU than the 

FADN-based approach.  

 

Although the FADN presents a consistent source of data on farms in the EU, a few challenges 

still persist with using it to categorise production systems. First, the lack of physical input use 

information in FADN presents challenges to quantifying input use, particularly as price shocks 

and other market fluctuations create problems when using input expenditures as a proxy for 

input use. This study used price indices to develop a pseudo input using quantity. Next, very 

small farms deemed uncommercial are excluded from the FADN. Although these might be a 

minority in the EU context, this still implies that the subsistence management system is not 

still represented. 

3.2 Estimating costs of crop production under different management systems 
using FADN data for the Forestry and Agricultural Land-use and 
Management Costing (FALMCO) Module  

3.2.1 Background 

Although farm activity-specific costs are necessary for analysing agricultural policy and welfare 

impacts, providing technical coefficients on producers' behaviour and production 

technologies, and simulating agricultural supply assumptions and shocks in market models, 

such as GLOBIOM, MAGNET, IFMCAP, CAPRI, they are often rare, limited and in most farm 

survey and accounting databases (i.e., FADN). Additionally, most farm survey data report on 

aggregate farm-level cost expenditures rather than the activity level input use. For example, 

fertiliser expenditure captures expenses related to all types of fertiliser products (e.g., 

ammonium, potash, phosphorus) applied at the farm. Moreover, input quantities or input 

price information are rarely available.  

 

Consequently, studies have often tried using a diverse array of methods to allocate aggregate 

production costs reported in farm surveys to specific activities performed on the farm. 

However, most studies in the EU focused on specific costs (i.e., crop-specific and livestock-

specific costs) rather than allocating all costs, including overheads. Furthermore, most EU 

analyses were limited to a specific MS or region. In this subtask, we aim to use econometric 

models to allocate aggregate farm-level variable costs (crop-specific costs and overheads) to 

crop-specific activities/outputs produced at the farm across the entire EU. An end product is 

a database reflecting the production costs of major crops across the EU. This has three 

advantages. First, due to the flexibility of the models, a more comprehensive set of costs are 

allocated with computational ease. Second, this application covers a wider geographical area 

and presents cost allocation at the NUTS-2 spatial resolution. Third, temporal cost dynamics 

can be examined. Finally, as the estimations are based on the EU FADN, these costs can be 
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used by other market models. The current application is linked to improvements in the supply 

side of the GLOBIOM model. 

 

Currently, GLOBIOM has a limited representation of detailed costs. Besides the few explicit 

cost categories (a general cost component, costs of land use change, trade and transport costs, 

and the marginals of resource constraints on land and irrigation water), production costs stem 

from a calibration step for the base period, 2000. Based on the assumption of perfect 

competition with price-taking producers, in this step, the observed market price (from 

FAOSTAT) is matched by all suppliers' costs via the addition/subtraction of an unobserved cost 

component on top of the sum of the explicit cost categories.  

 

In principle, the relation between individual cost items and the comparative advantage of 

activity is straightforward. Reducing a cost item would increase the comparative advantage of 

the activity, depending on the share the costs represent in the total activity cost. 

Decomposition into individual cost items would allow us to analyse how cost components 

respond to trends and shocks. For example, how would the currently modelled costs react to 

observable trends (e.g., changes in prices of natural gas/oil/fertilisers/labour)? Therefore, 

implementing explicit cost items (i.e., fertiliser costs, energy, labour) with obvious links to 

these observed trends or policy shocks (e.g., taxes, subsidies) in GLOBIOM presents significant 

improvement of the model.  

 

Explicitly relevant to the GLOBIOM modelling framework, this sub-task aims to estimate 

production costs associated with crop production under the management systems defined 

above (LI, HI, IR) at the EU NUTSII resolution using the FADN dataset. The estimated costs will 

replace the general cost component in GLOBIOM and are expected to reduce the size of the 

calibrated cost component. This has two advantages. First, for GLOBIOM to allocate the 

production of a specific crop to a spatial unit, data for the crop production process in the unit 

is necessary. As one of these required data points is the cost of production, the current 

approach, based on calibration to observed activity levels, does not allow the model to 

produce a crop in a spatial unit where this crop was not produced in the calibration period. 

Implementing explicit costs could overcome this lack of data. Second, improving cost 

representation in GLOBIOM would also improve consistency with other technologies 

represented through engineering bottom-up cost approaches (i.e., forestry-specific costs and 

technological mitigation options).  

3.2.2 Methods and data  

Estimating activity-specific cost applies the least squares regression technique (i.e., random-

effects model). This approach has been widely used to analyse and allocate variable 

production costs of the agricultural sector panel and cross-sectional data sources (Cesaro et 
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al., 2013; Hallam et al., 1999; Just et al., 1990). This method estimates a functional relationship 

between aggregated costs (inputs) and the outputs produced at the farm level based on a 

system of equations.  

 

Our econometric approach follows the work of Cesaro et al. (2013) and Hallam et al. (1999). 

It explores the benefit of panel data of the FADN data to control for these individual farm and 

year effects while applying the random effect estimation of seemingly unrelated regressions 

as follows:  

 

 

𝑥𝑖𝑘𝑡 =∑𝛽𝑗𝑘𝑦𝑖𝑗𝑡

𝐽

𝑗=1

+ 𝛽0𝑘 + 𝛼𝑖𝑘 + 𝜀𝑖𝑘𝑡 

(1) 

 

where 𝑥𝑖𝑡 denotes the 𝑘-th input cost (along input cost categories 𝑘 = 1, … , 𝐾) of farm 𝑖 at 

time 𝑡. 𝑦𝑖𝑗𝑡  is the observed 𝑗-th output (with 𝑗 = 1,… , 𝐽) by farm 𝑖 in time 𝑡, and 𝛽𝑗𝑘  is the 

corresponding unknown technical coefficient (to be estimated) and is defined as the average 

cost of input required to produce a unit of output. The𝛼𝑖𝑘 term captures unobserved farm 

heterogeneity and is assumed to be random. The 𝜀𝑖𝑘𝑡 term is statistical noise (iid Gaussian 

distributed with zero mean and 𝜎𝑘
2 variance). The cost of production 𝑐𝑗𝑖𝑡 per unit of output 

𝑦𝑗𝑖𝑡 produced by farm 𝑖 in time 𝑡 is calculated using a vector of farm-specific price per ton of 

output (𝑝𝑗𝑖𝑡) and yield per hectare (𝑧𝑗𝑖𝑡) and as: 

 

 𝑐𝑗𝑖𝑡 = 𝛽𝑗𝑝𝑗𝑖𝑡𝑧𝑗𝑖𝑡    (2) 

 

This modelling framework is easy to implement, flexible, and readily adapted to aggregate 

farm overheads (i.e., depreciation, energy costs) and specific costs (i.e., crop- or livestock-

specific costs). Furthermore, it is simple and does not require sophisticated econometric 

procedures in its implementation (Surry et al., 2013). Additionally, this model can easily be 

applied to small regions (i.e., NUTS 2 regions) or larger ones (i.e., the entire EU region). 

 

However, applying this approach introduces some interesting econometric features. First, 

given the structure of the model, each equation is composed of a dependent variable (i.e., 

cost component) and a set of explanatory variables. The set of regressors could be similar for 

all equations or unique. As Cesaro et al. (2013) noted, the simple ordinary least squares (OLS) 

is a suitable estimator if the regressors are the same for all equations and no correlation of 

the error terms persists. However, if the equations have different regressors and significant 

correlations between the error terms persist, then the seemingly unrelated regression (SUR) 

technique is preferred to the OLS (Cesaro et al., 2013).  
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Second, estimated technical coefficients could have implausible magnitudes, and negative 

signs are sometimes statistically significant (Hallam et al., 1999). The authors note that these 

issues could be attributed to heterogeneity among farms. Heterogeneity can originate from 

significant farm-to-farm variations pertaining to inputs and outputs resulting from factors 

related to differences in production conditions (i.e., quality of land resources) and managerial 

skills of farmers. Another source of heterogeneity is the yearly variations influenced by 

climatic and environmental conditions (i.e., rainfall patterns, droughts, and pests). 

 

The empirical analysis applies an unbalanced panel of crop farms from the FADN database 

from 2007 to 2018. It focuses on the EU 27 Member States (MS) and the UK. Our utilised 

sample focuses on farms with crop farming as their primary production and is selected based 

on the EU's Type of Farm (TF14) grouping. This includes specialised cereal, oilseed, and protein 

crop (COP) farms (TF14= 15), other field crops (TF14= 16), mixed crop farms (TF14= 60), and 

mixed crop and livestock farms (TF14 = 80) (European Commission, 2008). As specialised farms 

use inputs differently from mixed farms, it is interesting empirically to assess if costs vary 

among farms.  

 

Table 3 and Table 4 provide an overview of the input and output variables used in the analysis. 

This analysis focuses on allocating crop-specific costs and farm overheads to crop outputs 

produced on the farm. In this respect, three crop-specific costs are considered, and 13 

overheads. The crop-specific costs are seeds and seedlings, fertilisers and soil improvers, and 

crop protection. The overheads are broadly categorised as: i) energy costs which include 

motor fuels, electricity, and heating fuels; ii) maintenance and upkeep costs which capture 

building and machinery maintenance; iii) financial costs, including rent, interests, and taxes 

paid, iv) depreciation, and v) wages.  

Table 3 Overview of costs. 
Costs (EUR) FADN 

Common 
Name 

FADN description 

Crop-specific costs  

Seeds  SE285 Seeds and plants. It relates to agricultural and horticultural crops.  

 Fertilisers and soil 
improvers  

SE295 Purchased fertilisers and soil improvers (excluding those used for 
forests) 

Crop protection SE300 Plant protection products, traps, baits, bird scarers, anti-hail 
shells, frost protection, etc. (excluding those used for forests). 

 Farm overheads 

Energy costs 

 Motor fuels IFULS_V Motor fuels and lubricants  

 Electricity IELE_V Electricity  

Heating fuels IHFULS_V Heating fuels Farming overheads Value 
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 Maintenance and upkeep costs 

Building maintenance  IUPKPLND_V Current upkeep of land improvements and farm buildings  

Machinery maintenance IUPKP_V Current upkeep of machinery and equipment  

 Farm depreciation 

Depreciation  SE360 Depreciation of capital assets estimated at replacement value 

 Financial cost 

Interests paid SE380 Interest and financial charges paid on loans  

Taxes SE390 Farm taxes and other dues (excluding VAT and the personal taxes 
of the holder) and taxes and other charges on land and buildings.  

Agricultural insurance IINS_V Agricultural insurance  

Rent paid  SE375  Rent paid for farmland and buildings and rental charges. 

 Wages 

Wages Family Wages5 

+ Paid Wages 

 

Family wages (SE370/SE020) 
× SE015 

Average wage rate * unpaid labour inputs  
Wage rate = (se370/se020) 
SE370 is wages paid to wage earners 
SE020 is paid labour input 
SE015 is the unpaid labour units 

Wages paid  SE370  Wages and social security charges (and insurance) of wage 
earners. Amounts received by workers considered as unpaid 
workers (wages lower than a normal wage) are excluded. 

 

All cost variables are directly in FADN data, either aggregated under the standard results 

variables (commonly referred to as SE variables) or individually denoted under the cost 

category of the variables. As expected, wages and social security charges, particularly relating 

to unpaid labour, are not captured. Wages accrued to the farm must be represented in the 

estimation, even if it is the farmers' own labour and thus is unpaid. To this, three proxies have 

been suggested. First, the paid wages recorded under SE370 could be used as a proxy for the 

value of unpaid labour. However, this proxy poses a significant challenge in the context of 

FADN as most farms are family-run and predominantly rely on unpaid family labour and thus 

do not report any use of hired labour. Second, net farm income can be used. However, this 

can yield negative values if farms report a loss and, therefore, become unsuitable as a proxy 

for cost. Thus, in this study, we use a yearly average wage rate at the MS level calculated using 

the mean per unit wage of labour. However, unpaid labour faces the same wage rate and is 

therefore treated as homogenous, which may not necessarily reflect reality. The calculated 

mean wages per MS are then multiplied by unpaid labour used to generate a proxy cost 

associated with family labour costs.  

 

 

5 This is proxy measure, self-calculated from the data. 
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Regarding the crops, we mainly focus on the major crops produced in the EU and represented 

in the GLOBIOM model (see Table 4). These are grouped into three main categories: i) cereals, 

ii) oilseeds and protein crops, and other crops. However, to appropriately allocate overhead 

costs to all farm activities and enterprises, it was necessary to include other crops produced, 

livestock, and farm activities. 

Table 4 Overview of crops. 
Crops  Short name 

used in 
figures 

FADN 
Common 
name 

FADN Description 

Cereals 

Barley brl CBRL_TO Barley Total output  

Common 
wheat 

whtc CWHTC_TO Common wheat and spelt Total output  

Durum wheat whtd CWHTD_TO Durum wheat Total output  

Grain maize mze CMZ_TO + 
CCRNSWT_TO 

Grain maize and corn-cob mix + Sweet corn Total output  

Fodder maize fmze CFODMZ_TO Green maize Total output  

Rye rye CRYE_TO Rye and winter cereal mixtures (maslin) Total output  

Oats oat COAT_TO Oats and spring cereal mixtures (mixed grain other than maslin) 
Total output  

Rice rice CRICE_TO Rice Total output  

 Oilseeds and protein crops 

Rapeseed raps CRAPE_TO Rape and turnip rape seeds Total output  

Sunflower sfl CSNFL_TO Sunflower Total output  

Soya soy CSOYA_TO Soya Total output  

Chickpea chkp CLNTL_TO Chickpeas, lentils, and vetches Total output 

Flax flx CFLAX_TO Flax Total output Value 

Field peas pea CPEA_TO Field peas, beans, and sweet lupins Total output  

Other crops 

Cotton ctn CCOTN_TO Cotton Total output  

Potato pto CPOT_TO Potato Total output  

Sugarcane sgcn CSUGCN_TO Sugarcane Total output  

Aggregated crop and livestock production necessary for the estimation of overhead costs 

Other cereals  CCEROTH_TO Other cereals for the production of grain Total output 

Vegetable and 
flower  

 SE170 Vegetables and flowers 

Fruit, 
excluding 
citrus fruits 

 SE175 Fruit trees and berries grown in the open (including tropical 
fruit), excluding citrus fruit orchards and grapes. 

Citrus fruit  SE180 Citrus fruit 

Wine and 
table grape 

 SE185 Wine and grapes 

Olive and olive 
oil 

 SE190 Olives and olive oil 

Fodder crops  SE195 Forage crops (i.e., roots and brassicas, other fodder plants, 
meadows and permanent pastures, rough grazing, fallows). 
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All other crops  SE200 Other crop output, including other arable crops (not covered by 
specific headings) and permanent crops grown under shelter. 

Cattle meat   SE220 Beef and veal 

Sheep and 
goat meat 

 SE230 Sheep and goats 

Pig meat  SE225 Pigmeat 

Poultry meat  SE235 Poultry meat 

Cattle milk  SE216 Cows' milk and milk products 

Sheep and 
goat milk 

 SE245 Ewes' and goats' milk 

Poultry eggs  SE240 Eggs 

Other 
livestock 
products 

 SE251 Other livestock and products (i.e., Meat of equines and other 
animals, wool, other animal products). 

 

A final step necessary before the cost estimations is the outlier analysis, which identifies and 

omits observations with unrealistic values to ensure that the estimation results are unaffected 

or skewed by outliers and extreme and implausible data points (Bahta et al., 2011; Cesaro et 

al., 2013). Billor et al. (2000) presented a complete overview of the outlier algorithm applied 

in this study and implemented using the STATA 15 software. Additionally, crop farms with no 

utilised agricultural area are omitted. Third, the expenditures and total output values used in 

the estimations are deflated with relevant input and output price indices from Eurostat using 

2010 prices.  

3.2.3 Key findings  

This section presents the results of production costs of major crops across the management 

systems defined in Section 3.1 above across the EU, focusing on crop-specific costs and 

selected overheads. To present the main findings succinctly, the EU is categorised into five 

regions based on the GLOBIOM region classification: i) Central-East (covers Bulgaria, Croatia, 

Czech Republic, Hungary, Poland, Romania, Slovenia, Slovakia ), ii) Baltic (Estonia, Latvia, and 

Lithuania), iii) Mid-West (Austria, Belgium, Germany, France, Luxembourg, and The 

Netherlands), iv) North (Denmark, Finland, Ireland, Sweden, United Kingdom), and v) South 

(Cyprus, Greece, Italy, Malta, Portugal, and Spain). 

 

3.2.3.1 Distribution of production cost shares across the EU regions 

Figure 7 presents the average percentages of cost categories across the EU. On average, 

expenses for fertiliser and other soil improvers constitute the largest share of total costs 

(approx. 22%) among crop farms in the EU—other substantial costs are energy costs and 

depreciation.  
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Figure 7 Average shares of production costs. 

To delve deeper, we analyse the distribution of costs across the five EU regions, as presented 

in Figure 8. Results show that although the distribution differs, fertiliser costs are still 

substantial and dominate the cost accrued by farmers. The share was highest in the Baltic 

region (approximately 30%) and lowest in Central East and North EU regions (approximately 

19%). The subsequent ranking differs; while depreciation costs ranked second among Baltic 

(21%) and Mid-West (19%), energy costs ranked second among Central East and South EU 

regions. In the North region, maintenance and upkeep costs ranked second to fertiliser costs.  

 

Figure 8 Distribution of costs across the five EU regions 
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3.2.3.2 Production crop costs under different management systems 

An essential aspect of this study assesses the cost of crop production, reflecting the various 

management practices and systems. Figure 9 captures the difference in expenses (in €) 

between management across the EU regions. Results show that costs are highest among crop 

farms in North and Mid-West EU (i.e., total costs exceed €1000/ha). 

 

Furthermore, across the EU regions, costs are lowest among low-input production systems. 

Costs among irrigated systems are highest in the Baltic, Central-East, and North EU regions. 

This trend is, however, not observed among Mid-West and South EU regions.  

 

Figure 10 presents the production cost of 17 crops under diverse management systems. Sugar 

cane production has the highest cost, predominantly driven by depreciation and wages 

(exceeding over €2000/ha under all management systems, followed by flax and potato 

production. Although a relevant crop globally and therefore captured in the global version of 

the GLOBIOM model, sugarcane is not predominately cultivated in the EU, with production 

restricted to parts of France, Portugal, and Spain. 

 

Figure 9 Capturing differences in costs (€) across the EU regions and management systems. 

 



 

 

 

Figure 10 Costs of production across selected crops under different management systems (LI, HI, IR). 
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Regarding cereal production, results show that rice production costs were the largest (approx. 

€878/ha), driven by fertiliser and crop protection costs. This is followed by durum wheat 

(€846/ha) and maize production (approx. €719/ha), with fertiliser costs constituting the main 

driver. Oat production is the least costly (approx. €350/ha). 

 

Regarding oilseeds and protein crops, soybeans production costs the most (€614/ha), followed 

by rapeseed (€487/ha) and sunflower seed production (€395/ha). Concerning industrial and 

other crops, chickpea (€931/ha) and cotton production (€656/ha) are the highest, driven by 

financial and energy costs.  

 

Assessing the costs across management systems, results show that except for flax, low-input 

systems had the lowest expenses. Irrigated production systems are more expensive for most 

crops than high-input systems (i.e., maize, rye, rapeseeds). However, this trend is not 

persistent across all crops. A plausible explanation is that irrigated systems had fewer 

observations for most crops.  

 

3.2.3.3 Crop yields under different management systems across the EU 

Here, we study three dimensions. First, we examine the distribution of crop yields across the 

EU regions, presented in Figure 11. Results show production and yield variations across the 

EU. Among most crops, average yields are highest in the West EU. Lower yields are typically 

observed in the Baltic and Central East. Furthermore, although certain crops are produced 

widely across the EU, others are concentrated. For example, although common wheat and 

maize production are widespread across the EU, crops such as rice and sunflower seeds are 

concentrated in Central East, South, and parts of Mid-West EU regions.  

 

Moreover, the distribution of yields in Figure 11 shows that while some crops are dense 

around the mean, most crops (such as rice, barley, and maize) are sparsely distributed across 

the regions. Interestingly, most crop yields in the Mid-West are densely distributed, while the 

Baltic and Central East distribution is largely sparse.  
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Figure 11 Distribution of crop yields across the EU regions based on the FADN sample. 

Second, we compare the average yields based on our FADN sample and Eurostat. The results 

in Figure 12 compare the yields of: i) cereals (i.e., barley, common wheat, maize, rye, oat, rice 

and durum wheat), ii) oilseeds and protein crops (i.e., rapeseeds, sunflower, soya beans and 

peas) and iii) root crops (i.e., potatoes and sugar beet). We observe a positive correlation 

between Eurostat and FADN yields for all crops. The positive relationship is strongest among 

oilseed and protein crops, with very few extreme values for pea and sunflower production. 

Although the yields for cereal crops are generally consistent, we still observe some 

discrepancies among maize, rye and rice crops, where FADN yields are more than Eurostat 

yields. Potato yields are largely consistent, while sugar beet yields show more discrepancies. 

 

Lastly, we examine the relationship between yields and total costs across the different 

management systems. Error! Reference source not found. presents the resulting curve 

calculated as the prediction for crop-specific yield from a linear regression of the yields on 

crop-specific total costs under diferentmanagement systems. The results show a positive 

correlation between costs and yields among all crops, capturing the marginal physical product. 

As expected, the marginal physical product of total costs increases until a point where an 

additional unit of total input cost spent results in decreasing yields, exhibiting a diminishing 

marginal product.  
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Figure 12 Comparing Eurostat and FADN crop yields across the EU regions. 
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Figure 13 Cost and output dynamics across management systems of cereal and oilseeds crops 
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3.2.4 Concluding remarks  

This section estimates and disaggregates farm-level costs among crops produced on the farm. 

This analysis primarily focuses on providing estimates that improve the heterogeneity of crop 

production systems in GLOBIOM. To accomplish this, we apply econometric techniques using 

FADN farm-level data on specialised COP, field crop, mixed crop, and mixed livestock and crop 

farms to capture varying input uses and reflect the management systems captured in Section 

3.1 above.  

 

The results show that although the distribution of costs differs across the EU regions, fertiliser 

costs are still substantial and form the lion's share of costs. Second, the production costs are 

highest in the North EU region, with the irrigated systems having the highest costs. Moreover, 

cereals such as rice, durum wheat, and maize have the highest production costs, primarily 

driven by fertiliser expenditure.  

 

Lastly, results show a positive correlation between crop yields and total costs. This implies that 

an increase in input use and, thus, costs results in a proportionate higher yield. However, for 

most crops, results show an inverted U-shaped graph. This result suggests that the benefit of 

increasing input use (production costs) decreases once the optimal crop yield is achieved. At 

this point, an additional increase in input use does not improve yields and, in some cases, 

results in lower yields (i.e., maize, barley). 

 

3.3 Validation of production costs using national datasets 

To validate the results of the estimated costs, we compile open-source benchmark data on 

the cost components of crop production (e.g., wheat, maize, barley). The validation data for 

production cost components have been compiled for four EU countries: Austria, the Czech 

Republic, Germany, and Spain. The temporal dimension, crop activities, cost compositions, 

and spatial coverage differ. Figure 14 describes the validation data.  

 

It is important to note that the bottom-up nature of the data for Austria and Germany (profit 

loss calculator dataset) supplies valuable information on prices and quantities to implement 

bottom-up costs. 

3.3.1 Austria  

This data is based on a webpage calculator developed by “Bundesanstalt für Agrarwirtschaft 

und Bergbauernfragen” - BAB (abbreviation in German), which translates to Federal Institute 

of Agricultural Economics. It is an economic and social science research institute under the 

Austrian Federal Ministry of Agriculture, Forestry, Environment, and Water Management 
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(BMLFUW). The production data is available as single national data points (no time series) as 

5-year averages (2015-2019 or 2016-2020, depending on activity). The calculation is based on 

prices and quantities (bottom-up).  

The GLOBIOM crop production activities represented in the BAB data include wheat, durum 

wheat, corn, soya, sugar beets, sunflower, rye, rapeseed, potatoes, barley, oats, and peas. 

Although not processed, online production activities include organic options for the 

mentioned crops, silage corn, wine, and livestock. The dataset represents variable crop-

specific costs, e.g., fertiliser, seeds, and crop protection. Other variable costs included in the 

database are drying, cleaning, machinery, and other costs. 

 

Figure 14 Summarizing the validation data 

 

3.3.2 Czech Republic  

The costs of production are calculated by the ÚZEI (abbreviation in Czech of “Ústav zemědělské 

ekonomiky a informací,” which translates to the Institute of Agricultural Economics and 

Information) (IAEI, 2018). The annual data is based on surveys and includes crop and livestock 

production costs. It is available as national averages for "crop zones" (corn and sugar beets 

zone, potato zone, potato, oats, and mountains zone) from 2002 through 2015.  
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The cost components included in the dataset are fertiliser (owned and purchased), plant 

protection, seeds (owned and purchased), and various other costs (e.g., administrative 

overhead, depreciations, other direct material, wage and personnel). This data represents the 

following GLOBIOM crops: corn, flax, oats, peas, potatoes, rapeseed, rye, silage corn, barley 

(spring and winter), wheat (spring and winter), sugar beets, sunflower, triticale. Further 

activities in the dataset include hops, livestock, and fruits. 

3.3.3 Germany  

The validation dataset for Germany is provided by the KTBL (abbreviation in German of 

“Kuratorium für Technik und Bauwesen in der Landwirtschaft,” which is translated to 

Curatorship for Technology and Engineering in Agriculture). This institute is supported by the 

German Federal Ministry of Food and Agriculture (BMEL). Two datasets are available. First is 

the profit and loss calculation dataset based on a bottom-up online calculator. This captures 

various production parameters (e.g., field size), which can be specified to generate different 

cost data points. The second is the standard gross margin dataset.  

 

The latter dataset is used for validation, is regionally available for NUTS-2 regions (changes in 

NUTS-2 borders over time must be considered), and covers seasons 2000/2001 through 

2019/2020. Cost components included in this dataset are fertilizer costs, pesticide costs, costs 

of planting stock and seeds, and other variable costs. Crops represented in GLOBIOM are 

barley, corn, wheat, fallow land, flax, silage corn, oats, potatoes, rapeseed, rye, soya, sugar 

beets, and sunflowers. The dataset also includes other crops (e.g., hops and tobacco) and 

aggregates (e.g., other cereals, protein crops). 

3.3.4 Spain 

Validation data for Spain are based on publications by the MAPA (abbreviation in Spanish for 

“Ministerio de Agricultura, Pesca y Alimentación,” which translates to Spanish Ministry of 

Agriculture, Fisheries and Food) (MAGRAMA, 2013; MAPA, 2020). The data are available at 

the NUTS-2 level for the years 2010 and 2016. Represented cost components include seeds, 

fertilizers, plant protection, machinery (contract work, fuel, and lubricants, maintenance), 

human labour, and others. Crops represented in GLOBIOM are Barley (irrigated and rainfed), 

common and durum wheat (irrigated and rainfed), maize (irrigated), oats (rainfed), potatoes 

(irrigated), rape seed (irrigated and rainfed), rye (irrigated and rainfed), sugar beets (irrigated), 

and sunflowers (irrigated and rainfed). 
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3.3.5 Key Findings 

This section presents the results of the estimated costs (in Section 3.2) cross-validated with 

the benchmark data from Austria, the Czech Republic, and Germany. One of the main 

challenges of cross-validation is the consistency of the costs. As described in Figure 15 above, 

the different sources of validation data calculated the various production costs differently. 

Given this, we focus the cross-validation analysis on crop-specific expenses (i.e., seeds, 

fertilizers, and crop protection).  

 

Figure 15 Comparison of estimated costs with validated data across all crops. The validation data is 
based on 5-year averages.  
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Figure 15 summarises the validation of the estimated cost data. The x-axis contains the 

estimates of costs in the categories of fertilizers, crop protection, and seeding costs. 

Moreover, the validation datasets are also depicted. For Austria, the Czech Republic, and 

Germany, only an overall validation dataset is available, while for Spain, detailed validation 

data on irrigated and rainfed crop management is available. Overall, the plot confirms that the 

cost estimates align with bottom-up datasets, especially for rainfed crop costs. This is not 

entirely surprising, as the irrigated costs have an explicit markup, as outlined in the cost 

estimation method in the previous subsections. 

3.4 Parametrization of the macro-level model GLOBIOM with validated cost 
estimates 

This section describes the GLOBIOM parameters to be updated, indicating the mapping to 

GLOBIOM of estimates and preliminary results (including stylized graphics). The GLOBIOM 

version to be used is a new EU light version. It is based on the global TRUNK version but differs 

from it in two points: First, the demand side is more granular. Instead of 5 EU regions, all 27 

EU Member States (MSs) are represented individually. Second, trade is explicit between MS 

and countries outside the EU. 

3.4.1 How do cost estimates from Section 3.2 enter GLOBIOM? 

Cost estimates for each crop activity are estimated per NUTS 2 region (based on the 2016 

Eurostat NUTS-2 classification). The global version of GLOBIOM used in this report is run on a 

resolution of a grid of 2-degree pixels (roughly 200 by 200km at the equator). To map the 

NUTS-2 level costing database to the 2-degree grid, an area-weighted mapping was developed 

based on the 1:1 million shapefile of NUTS-2 regions available from Eurostat. 

 

Given that FADN is a sampled dataset of farms, there are regions where no observations on 

GLOBIOM crops are present, even though theoretically, production would be possible. This is 

because production in these regions is relatively small, with few observations and no farms 

producing these crops were included in the sample. Alternatively, the current production in 

these regions is low but could be expected to increase in the future (due to market dynamics 

or the effects of climate change on crop yields).  

 

When using the cost data in GLOBIOM, it is crucial to have broader coverage than is strictly 

observed from the sample. In the initial econometrically estimated costing database, 38.45% 

of cost data specific to GLOBIOM grid cells, crops, management systems and activity 

dimensions are missing. To have 100% coverage, the following rules were used: 
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1. As an initial step, if observations were missing for a specific grid cell, crop, 

management system and cost type combination, these were replaced by the 

respective average values of non-missing observations within the same country. After 

this step, 20.68% cost estimates remain missing. 

2. The remaining missing values for specific crop, management system and cost type 

combinations are replaced by EU averages of the same crop, management system 

and cost type. After this step, 2.21% remain missing. 

3. If no exact match of crop, management system and cost type is found in the same 

country, the average across all management systems within a country is inputted for 

the same crop and cost type combinations. After this step, 1.68% of estimated data 

points remain missing. 

4. For the remaining missing data, the average across crops (while keeping the 

management system and cost type dimensions) is inputted within the same country. 

The percentage of missing observations is reduced to 1.47%. 

5. As a next step, the average of all crops across the EU is taken (while keeping the 

management system and cost type dimensions). This results in 0.86% of observations 

remaining missing. 

6. For the last remaining cost components, an average across countries, management 

systems and crops is inputted. There are no more missing data after this step.  

 

Additionally, four crops observed in the FADN data are mapped to five unobserved crops 

present in GLOBIOM to approximate cost estimates for the unobserved crops.6 The mapping 

is based on general similarities of the crops. 

3.4.2 Cost dynamics 

The estimated costs in Section 3.2 are reported in EUR2010, while GLOBIOM uses USD2000 as 

currency. Hence, the FADN-based estimates are converted and deflated to USD2000. The 

average annual EUR/USD exchange rate for the year 2000 is used for the conversion. The 

European Central Bank estimates this average exchange rate of 0.924 USD/EUR. A general 

price index provided by Eurostat between 2010 and 2000 is used to deflate the cost estimates, 

with a deflation factor of 0.817. 

 

FADN data is available annually from 2007 through 2018. This overlaps only with one of the 

decadal GLOBIOM periods (2010). Other historical GLOBIOM periods (2000 and 2020) and 

future periods (2030, 2040, and 2050) lie outside the temporal range of FADN data. 

 

 

6 chickpeas → dried beans; corn → sorghum, millet; peas → groundnuts; potatoes → sweet potatoes 
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In GLOBIOM, using estimates from a single year could create confounding effects, especially 

in cases where the estimates are affected by single-effect shocks related to that single year. 

To reduce this risk, an average of cost estimates based on a symmetric time frame around 

2010 is used to smoothen the parameters (2010 +/- 2 years, i.e., 2008-2012). For other 

historical (2000 and 2020) and future GLOBIOM periods (2030, 2040, …), shifted 2010 cost 

parameters are used. In GLOBIOM, conventionally, costs are shifted between periods using 

yield growth data, leading to growth paths for costs. The shifting applied to the cost estimates 

uses these growth paths together with the cost parameters for 2010 as a base to extrapolate 

cost parameters for all other periods. Deviating from these cost growth paths offers options 

for scenario analyses. 

 

3.4.3 Proof of concept  

After implementing the cost estimates in GLOBIOM, the resulting additional granularity of cost 

modelling is used to simulate an exemplary policy scenario where a single cost component is 

shocked. Specifically, the cost of nitrogen fertilizer is increased homogeneously in all EU-27 

Member States to simulate a hypothetical policy to reduce this input via taxation. When 

comparing this policy scenario with a business-as-usual baseline scenario, the difference 

between the scenarios reveals the impact of the policy intervention, i.e., the tax on nitrogen 

fertilizer. The exemplary policy simulation uses a shock in the form of a tax of 132% on the 

cost of nitrogen fertilizer that is applied from 2020 onwards7 to all cropping activities in all 

management systems and agro-ecological zones throughout the EU. This shock corresponds 

to a hypothetical emission price of 200 EUR/tCO2eq on the emissions from the production and 

application of nitrogen fertilizer. In this exemplary scenario, the money raised by the newly 

introduced tax is assumed not to re-enter the modelled sectors. 

 

The evaluation, as a comparison of the baseline and policy scenarios, is based on the GLOBIOM 

simulation for 2030. It shows that, due to the policy, the input quantity of nitrogen fertilizer 

decreases on average by 28% EU-wide (see Figure 16). This corresponds to an average 

reduction of surplus nitrogen (i.e., inputs less withdrawals from the soil) of 25% EU-wide 

(see Figure 17). 

 

The policy impacts the profitability of European agricultural production. Member States 

compete with non-EU producers that are not affected by the hypothetical tax. This becomes 

apparent when looking at changes in the use of cropland in the EU and elsewhere (see Figure 

18). EU use of cropland shrinks by 25.6 million ha compared to the baseline in 2030. At the 

 

7 GLOBIOM simulates annual equilibria every ten years, starting in 2000. 
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same time, cropland use outside the EU increased by 10.3 million ha, stepping in for lost 

European capacities but not fully compensating them. A closer look at changes in cropland use 

per Member State reveals that in absolute terms, Spain, Italy, and Poland are impacted most 

by the tax, as they each use over 3.5 million ha cropland less (see Figure 19). 

 

Figure 16 Change of nitrogen fertilizer use in the policy scenario compared to the baseline in 2030. 
(Note: results for Malta are not meaningful.) 

 

 

Figure 17 Change of nitrogen fertilizer surplus in the policy scenario compared to the baseline in 
2030. (Note: results for Malta are not meaningful.) 
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Figure 18 Change in cropland in the policy scenario compared to the baseline in the EU and the rest 
of the World (RoW) in 2030. 

 

Figure 19 Change in cropland per Member State in the policy scenario compared to the baseline in 
2030. 

 

3.5 Improved livestock sector classification for the macro-level model 
MAGNET 

Splitting animal herds from the capital and estimating the substitutability of animal herds 

against other primary factors of production is, in principle, possible using the FADN database. 

This requires two distinct work steps. First, to derive the share of animal herds in total farm 

assets at the national level, such that the types of considered animal herds are consistent with 
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the definition of agricultural activities in the MAGNET models. Second, to devise an estimation 

procedure that identifies the needed substitution elasticities, again consistent with the 

definitions and factor combinations used in MAGNET. 

 

3.5.1 Agricultural primary factors in the MAGNET model 

Like many other global Computable General Equilibrium (CGE) models, the MAGNET model is 

built on the GTAP database. In principle, each country's database is structured as a 

commodity-by-commodity Input-Output Table (IOT). Productive sectors in GTAP distinguish 

between the production activities with their input requirements and the associated 

commodity outputs. Due to the commodity-by-commodity structure of the underlying IOTs, 

activities are defined by their commodity outputs, so that, e.g., the commodity raw milk is 

produced by a raw milk activity. A conceptual problem arises due to the fact that some primary 

factors available at the farm level may not be strictly attributable to a specific production 

activity, e.g., a cow herd can produce animals for fattening as well as for milk production. 

Hence, allocating factors to activities requires calculating the portion of the fixed, in principle, 

the non-allocatable asset needed by the respective outputs.  

 

The primary factors used by the agricultural activities in the GTAP databases are listed in Table 

5. Labour is split into skilled and unskilled, while capital distinguishes land and other physical 

capital. In the GTAP default aggregation, the three animal production activities that rely on 

standing herds as the main factor of production are “Bovine cattle, sheep and goats, horses,” 

“Animal products n.e.c,” and “Raw milk” production. Alternative aggregation levels are 

possible, provided that the data is available. 

 

Table 5 Agricultural activities and primary factor shares in GTAP. 

  
Labour   Capital   

  

Non-
skilled 

Skilled Other Land 

Paddy rice PDR 0.32 0.10 0.22 0.36 

Wheat WHT 0.39 0.10 0.25 0.25 

Cereal grains nec GRO 0.38 0.09 0.24 0.29 

Vegetables, fruit, nuts V_F 0.41 0.10 0.26 0.24 

Oil seeds OSD 0.38 0.10 0.25 0.27 

Sugar cane, sugar beet C_B 0.35 0.09 0.24 0.31 

Plant-based fibres PFB 0.27 0.04 0.22 0.48 
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Crops nec OCR 0.35 0.12 0.27 0.26 

Bovine cattle, sheep and goats, horses CTL 0.33 0.12 0.35 0.20 

Animal products nec OAP 0.38 0.10 0.52 0.00 

Raw milk RMK 0.37 0.13 0.28 0.22 

 

3.5.2 Capital assets and animal herds in FADN 

The farm accountancy data network (FADN) monitors farms' income and business activities. It 

is also an important informative source for understanding the impact of the measures taken 

under the common agricultural policy. It is currently the only source of microeconomic data 

based on harmonized bookkeeping principles. It is based on national surveys and only covers 

EU agricultural holdings, which can be considered commercial due to their size.  

 

FADN includes a range of indicators related to farm-level assets. The first group, total assets, 

measures fixed and current assets at their closing value, as shown in Figure 20. 

  

Figure 20 Components of fixed and current assets in FADN. 

 

Alternatively, the farm endowments are expressed as average farm capital, measuring the 

averages of opening and closing values for each reporting period for the elements shown in 

Figure 21. As defined in Figure 16, farm capital also includes several items not included in total 

assets, such as cash and equivalents. The question, which of the two categories, total assets 

or average farm capital, should be used as a proxy for the primary factor shares required by 
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the MAGNET database, should be answered by comparing the accounting principles of FADN 

with those of the System of National Accounts (SNA), on which the GTAP IOTs are based. 

However, a pragmatic consideration is that the MIND STEP project has applied for all variables 

within the asset category and not for all variables in the average farm capital category. So, for 

pragmatic reasons and because FADN assets seem closer to the MAGNET database, the asset 

category will be used. 

 

Figure 21 Components of farm capital in FADN. 

 

3.5.3 Data Manipulation – splitting SAM 

The SAM is the basis of the macroeconomic model and accounts for the total value of 

economic activities for the full economy for all the countries in the database and at the global 

level. Introducing Breeding Livestock as an input of production implies adapting the original 

SAM to account for this new element, splitting it from an existing one. Therefore, a new 

accounting line is introduced in the SAM to introduce the breeding livestock. The procedure 

to assign economic value to this account starts by collecting FarmDyn data on the associated 

value added at the sector level for all the targeted livestock sectors (Cows, Pigs, Milk, and 

other Cattle).  

 

In particular, the following data is useful to operationalize the herds split from MAGNET: 

• Shares of livestock in total capital stock and shares of sector-specific livestock 

from total livestock, ideally per each of the EU countries. 

• Data on subsidies or taxes on herds capital assets -if available or 

comparable 

• Depreciation rates – do we use one common depreciation rate like in GTAP 

(0.04) for all capital, or do we distinguish for the type of livestock asset – e.g., 

swine vs. cow?  

• Substitution elasticity between herds capital and other production function  

• Price and quantities of Livestock endowment 
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To maintain consistency with the remaining national accounts, using the share of livestock in 

total assets obtained by FADN was sufficient to carry out the SAM disaggregation. 

Nevertheless, other variables, such as the depreciation rates from FADN, were compared with 

depreciation rates in MAGNET to assess the consistency. 

These values are calculated for each FADN farm type and then mapped to MAGNET sectors as 

described in Table 6. Then, the share of livestock is extracted from total capital assets, 

excluding the non-breeding livestock from livestock assets at the specialized farm level. 

Furthermore, the shares of livestock assets have to be calculated, excluding land from total 

assets, to be consistent with the capital stock in MAGNET. 

 

Table 6 Agricultural activities and primary factor shares in GTAP. 

MAGNET name MAGNET 
code\ 

TF14 
Code 

TF14 Name 

Raw milk RMK 45 Specialist milk 

Other cattle othctl 48 Specialist sheep and goats  

Beef cattle bfctl 49 Specialist cattle 

Pigs pigpls 50 Specialist granivores (but without poultry!) 

 

Even though GTAP provides sector values for capital income, it only provides regional capital 

stock. Sector capital stock is derived from data manipulation using proportional shares of 

capital income. These values are used to redirect the proper amount to the breeding livestock 

account. In particular, splits are necessary for the activities, endowment, and investment 

accounts. Concerning the activities section, it is essential to split the rows in the activities 

column (and endowment row) corresponding to capital and livestock payments from each 

activity and the related factor input taxes (or subsidies) from the employment of capital and 

livestock. For the endowment section, the sum of livestock factor payments from each activity 

must be distributed to livestock capital income, income taxes paid over capital income from 

livestock, and depreciation. Finally, another consideration must be made on the side of 

investment demand. Gross Capital Formation (investments) in the four livestock types must 

also be linked to the investment demand of those sectors that produce them. Knowing if the 

livestock is produced at home or purchased from abroad would be useful. The list of the new 

livestock accounts in the SAM is reported in Table 7.  

Table 7 New breeding livestock accounts and relative accounting section. 

Account Section  Adapted Variable  
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Activities Column Input Value Added, Taxation on Firm Endowment use  

Endowment Colum Regional Household Revenue (dependent on endowments), 
Total taxation, Total Investment account 

Investment column Import and domestic value of livestock sectors, taxation of 
imported and domestic livestock sectors 

 

3.5.4  Modifications of the MAGNET model to account for livestock endowment 

The procedure adopted to explicitly represent breeding livestock as a factor of production 

improves the pre-existing structure, assuming undifferentiated general capital as one of the 

factors of production. In detail, the new production structure of the relevant livestock (row 

milk, cattle, pigs, and other livestock) sectors is reported in Figure 22. Several assumptions 

were made about the behaviour of the new endowment. First, herd capital stock has been 

assumed to be sector-specific, as it is impossible to exchange one breeding livestock for 

another (i.e., cattle cannot be used for production in the goat sector). This implies that the 

livestock market is sector-specific and livestock price differs across the sectors. This is a 

deviation from the other capital markets where capital is mobile and allows reallocation across 

the sectors. 

 

Furthermore, the new production input “lvcp” is introduced in the production structure at the 

same level as the other basic inputs (e.g., capital, labour, natural resources), and the elasticity 

of substitution is maintained as the one already estimated for primary inputs in the original 

MAGNET structure. This assumption can be changed in the future, assuming more data on the 

substitution between livestock and other production inputs.  
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Figure 22 Production structure of Livestock sectors in MAGNET. 

 

Having accommodated livestock in the production technology (the CES nested production 

structure) of livestock-using sectors allows for addressing the demand for endowment. The 

supply side of the endowment must be defined as well. Following the standard default 

MAGNET version, capital stock is set exogenously to follow the growth rate of GDP (constant 

capital-output ratio). Adopting a similar assumption for livestock would lead to excessive 

growth of livestock endowment supply. Thus, herd capital is assumed to grow as a percentage 

(25%) of the regional GDP growth. A similar assumption has been made for natural resources 

in MAGNET to mimic the possibility of maintaining/searching for more resources with more 

economic growth in the region. As the results in the previous subsection show, pegging 

livestock supply this way to GDP produces balanced results in terms of rates of returns (capital 

and livestock endowment prices evolve similarly). 

There are several future expansions of this modelling approach. First, an explicit link between 

investment and herds capital stock should be established. This requires several modifications: 

i) calibrating the value of herd livestock and depreciation as a share of total capital stock (at 

this moment, livestock input only represents herd capital income, not stock), ii) distinguishing 

between physical capital investments and livestock investments and modelling its allocation, 

iii) linking livestock investment to livestock capital stock, iv) linking livestock investment to 

investment demand. Second, more attention could be spent defining the substitution 

between breeding livestock and the other production inputs (positioning in the production 

function nest). 
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3.5.5  Baseline projections with livestock capital 

Concerning the European Union overall, the volume and prices of the inputs of production are 

reported in Figure 23. Labour will be relatively scarce considering the relatively low level of 

reproduction of the EU (which is generally a demographic pattern shared with other 

developed regions). Capital and Livestock, on the other hand, are driven by investment and 

macroeconomic growth, which is positive in the European countries and, therefore, generates 

an increase in these input volumes. The prices reflect the overall scarcity (abundance) of the 

production factors and, accordingly, increase (decrease) over the period of observance.   

 

Figure 23 Volume and prices of livestock sectors for the EU 28 region. 

 

The trends that emerge for the input analysis are confirmed by looking at the sectorial 

production at an aggregated world level (Table 8). Indeed, the production volume of the 

livestock sector is increasing, driven by economic growth and increasing availability of 

livestock driven by investments. Furthermore, its increase is comparable with the general 

trend of primary agricultural products in the region. On a sub-sector level, cattle and pig 

production increase relatively more as compared to other livestock sectors.  

Table 8 Production and price projections in agricultural and livestock sectors. 

 Production prices (% change) (EU28) Production volume (% change) (EU28) 
 

2014-
2019 

2019-
2025 

2025-
2030 

2030-
2040 

2040-
2050 

2014-
2050 

2014-
2019 

2019-
2025 

2025-
2030 

2030-
2040 

2040-
2050 

2014-
2050 

AGRI_PRIM -5,2 -6,04 -5,28 -10,16 -10,85 -32,43 1,12 0,81 0,42 2,07 2,51 7,12 

LIV_SEC -4,54 -5,22 -4,58 -9,44 -10,2 -29,79 2,08 1,98 1,44 3,56 3,69 13,38 

othctl -4,87 -5,63 -4,99 -9,75 -10,32 -30,97 1,22 0,96 0,53 2,82 3,6 9,44 

cattle -4,61 -5,26 -4,66 -9,61 -10,31 -30,15 1,96 1,94 1,61 4,16 4,35 14,78 

pigpls -4,62 -5,36 -4,75 -9,93 -10,61 -30,77 2,62 2,37 1,58 3,8 3,75 14,93 

milk -4,44 -5,09 -4,41 -9,03 -9,89 -28,93 1,84 1,8 1,34 3,2 3,38 12,09 
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At the country level, different behaviour emerges in the use of the inputs for the livestock 

sector Table 9. Asian and Sub-Saharan countries expect a higher breeding input use, partially 

due to the reliance of developing countries on primary sectors and partially due to the higher 

expected economic growth to the 2050 horizon with respect to the European area.  

Table 9 Production and price of Input projections for livestock sectors (disaggregated). 

 Inputs Prices used in Livestock sector (% change) Inputs Volume used in Livestock sectors (% change) 
 

ALL_FACT Land Capital UnSkLab SkLab Lvcp ALL_FACT Land Capital UnSkLab SkLab Lvcp 

CAN 4,1 39,9 -25,3 17,4 20,3 26,5 3,79 0,84 35,2 -28,43 -28,89 20,23 

USA 5,7 47 -29,9 0,2 4,9 28,1 3,71 1,26 37,73 -24,18 -25,08 18,41 

BRA 4,5 55 -29,9 38,8 42,5 21,2 15,14 5,97 45,35 -48,56 -48,91 27,98 

OSA 14 64,2 -44,6 15,2 22,3 26,2 2,05 10,61 62,18 -35,15 -36,12 33,34 

FSU 22,5 34,8 -43,2 34 51,1 -36,7 -29 -1,78 34,1 -56,33 -57,8 29,34 

REU 11,4 21,9 -27,2 34,9 37,3 -29,9 -14,16 -1,05 17,3 -45,07 -45,45 18,21 

MENA 6,7 40,7 -44,4 18,4 25,9 89,5 14,14 0 90,53 -22,69 -22,85 39,17 

SSA 23,3 323,9 -56,8 -19,6 1,6 256,3 31,89 0 193,32 -6,89 -13,78 70,78 

CHN 68,8 17,8 -58,4 136,1 143,1 -7,8 -8,94 -3 75,15 -47,83 -48,22 44,99 

AUT 13,9 -4 -31,7 31,5 38,2 -36,9 -23,2 -2,33 11,96 -37,97 -38,75 15,46 

BLX -6,5 -28,4 -40,8 8,8 20 -65,2 -22,4 -6 -3,07 -33,43 -35,1 18,9 

IND 31,7 96,7 -70,2 5,5 15,4 -63,6 -5,03 8,94 71,65 -57,6 -58,58 65,67 

BGR 39,9 -22 -67,3 111,3 143,9 -66,4 -19,44 -4,26 29,76 -48,54 -50,43 29,73 

SEA 6,9 50,4 -40,4 14,6 22,3 4,3 2,8 -0,41 42,32 -21,65 -23,33 23,34 

HRV 17,2 14,2 -24,3 42,3 53,9 -33 -24,39 -0,48 6,9 -50,77 -51,76 14,4 

OAS 108,8 297 -65,7 -14,9 8,4 -39,1 -2,15 0 83,84 -43,56 -47,4 63,24 

GCM -3,1 -15,3 -18,8 7,6 34,6 -50,6 -40,79 -4,96 -0,8 -62,36 -64,03 19,13 

ANZ 19,4 155,2 -38,7 1 3,1 60,8 6,69 0,28 56 -12,21 -12,66 25,16 

CZE 20 -8,1 -55,3 60,2 65,1 -57,5 -12,43 1,97 28,99 -34,77 -35,28 28,68 

DNK -5,7 7,8 -22,9 14,3 19 -34 -1,85 -11,87 22,07 -30,78 -31,5 16,35 

EST 46,8 10,4 -35,4 82,4 93,6 -51,7 -29,32 1,03 18,24 -55,04 -55,73 27,26 

FIN 9,3 -1,2 -31,2 21,9 26,5 -1,1 -22,17 -2,87 15,41 -37,42 -38,03 16,76 

FRA 0,5 12,7 -33,1 9 13 -27,6 -17,59 -0,95 23,6 -32,97 -33,59 18,16 

DEU 17,2 1,6 -27,7 32,4 37,1 -32,8 -24,89 -6,36 9,3 -38,37 -38,93 10,98 

HUN 5,5 -31,3 -56 55,8 65,1 -72,8 -25,6 -4,16 6,39 -54,35 -55,04 19,43 

IRL 46,9 44,6 -20,9 59,4 64,7 22 -8,48 0,06 34,93 -21,74 -22,39 21,22 

ITA 19,9 -7,8 -29,9 38,9 43,1 -26 -22,12 -2,17 13,92 -36,95 -37,43 12,26 

LVA 21,8 -34,7 -56,2 62,8 87,6 -72,5 -26,94 -2,9 7,65 -46,22 -48,17 20,79 

LTU 8,5 -36,7 -53,8 42,5 67 -66,5 -31,61 -6,63 6,57 -52,34 -54,26 17,31 

NLD 5,7 9,4 -35,6 14,2 25,7 -25,5 -12,23 -3,17 20,46 -23,36 -25,24 16,08 

POL 23,5 -0,9 -43,3 66 84,6 -52 -22,99 -3,53 15,93 -50,08 -51,44 19,94 

PRT 25,3 -22,5 -31,6 51,9 61,6 -50,3 -31,16 0,24 7,44 -49,81 -50,61 17,18 

ROU 17,3 -18,1 -53,2 61,4 97,8 -60,1 -27,05 -2,29 17,58 -56,76 -58,99 22,41 

SVK 11,6 -35 -64,4 62,5 66,4 -69,7 -19,53 0,29 18,77 -44,41 -44,74 24 

SVN 29,1 40 -39,2 48,1 52,6 -19,1 -15,67 -1,6 24 -37,52 -38 19,22 

ESP 6,6 12 -31,2 19,9 24,6 -34,1 -24,84 -10,91 10,4 -39,52 -40,13 12,16 

SWE 7,2 71,3 -32,4 11,7 14,9 -4 -9,99 -7,39 33,74 -25,03 -25,57 21,53 

GBR 18,4 37,7 -25,6 25,6 27,4 -20,5 -20,94 -2,16 19,52 -35,66 -35,9 19,46 
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Concerning the livestock sector production at the disaggregated regional level (Figure 24), 

different trends emerge. Indeed, countries like Belgium, Slovakia, and Latvia have a negative 

trend both in general livestock and primary agricultural production, while Lithuania and 

Hungary have negative trends in Livestock but slight increases in general primary agricultural 

production. Countries like Sweden, Ireland, France, Denmark, and Ireland show the strongest 

increases in the production of both livestock and agriculture. Interesting cases are Bulgaria 

and, more distinctly, the Netherlands, which expect an increase in the production of livestock 

but a decrease in primary agriculture.  

 

 

 

Figure 24 Production of Livestock related sectors for disaggregated Europe region (2014-2050). 
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The price of breeding capital for livestock production at a disaggregated country level 

highlights concerning patterns in several regions Figure 25. For example, MENA and, even 

more, South Saharan Africa show a significant and consistent increase in breeding livestock 

prices. This trend is shared, in lower entity, also by other South Asian countries, Brazil, Canada, 

and the USA, with the latter showing a strictly increasing trend. Concerns also arise in Ireland, 

showing a sensible spike in livestock prices in the second half of the simulation period. 

Substantial increases in the price of breeding livestock can be associated with increases in 

food production costs and, therefore, higher risks in meeting the country or regional 

nutritional requirements.  
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Figure 25 Breeding capital change price for Livestock sectors (% change). 
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4 IMPROVED ELASTICITIES OF 
SUBSTITUTION/TRANSFORMATION BETWEEN LAND 
USES 

4.1 A comparison of land-use and land-use change in Europe with GLOBIOM 
output 

The partial-equilibrium model GLOBIOM, more specifically its global version (Havlik et al. 

2014), represents main land use sectors, including agriculture and forestry. More specifically, 

six land use types are modelled endogenously: cropland (CrpLnd), grassland (GrsLnd), short 

rotation plantations, managed forests, unmanaged forests, and other natural vegetation lands 

(OthNatLnd). There are four additional land cover types represented in the model to cover the 

total land area: other agricultural lands (OthAgri), wetlands, not relevant (NotRel), and urban 

areas (Urban). These four categories are kept constant at their initial level and not modelled, 

hence exogenous. Economic activities are associated with the first four land cover types.  

 

The model can switch from one land cover type to another depending on the profitability of 

primary, by-, and final product production activities. Land conversion over the simulation 

period is endogenously determined for each grid cell within the available land resources. 

Although a global model and, in particular, taking spatial interaction effects into account, 

GLOBIOM operates on a spatial grid. The spatial resolution of the supply side relies on the 

concept of Simulation units, which are aggregates of 5 to 30 arcmin pixels belonging to the 

same altitude, slope, and soil class, the same 30 arcmin pixel, and the same country. 

 

Furthermore, countries are subsumed under supranational regions since certain parameters 

and features, such as international trade and demand side representation, apply to the 

supranational regions. See Annex Table A1 for a list of the 37 GLOBIOM supranational regions 

and the corresponding countries they include.  

 

The most important takeaway until now is that spatial information can flow through GLOBIOM 

from high resolution, i.e., simulation units, over lower resolution aggregates, i.e., countries, 

to broader spatial concepts in supranational regions. For instance, as represented by 

production in each grid cell, the cost of land use change (LUC) is one constraint that each 

supply-side producer faces. This cost is a function that quadratically increases (i.e. rising 

marginal cost) in the amount of LUC of a given transition pair accrued over all producers inside 

a supranational region. It is governed by an intercept and slope parameter and bound by a 

maximum parameter.  Over its simulation period, this maximum parameter limits the total 

amount of a given endogenous land use (LU) class area to transition to another per simulation 

https://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf
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region and timestep, e.g., cropland to grassland or other natural lands. Essentially, this 

maximum parameter is a weight between 0 and 1 of the initially present area, i.e., at the 

beginning of a simulation time step, of this LU class per simulation region. It acts as a safeguard 

to either meet policy constraints on the one hand or to cover potential outlier cases caused 

by the model’s behaviour.  

 

In this subtask, descriptive statistics on LUC observed between CORINE Land Cover (CLC) 

accounting layer8 observations between the years 2000 and 2012 are used to compare if 

conditions enabling the aforementioned maximum parameter in GLOBIOM matches the 

observed data. The CLC accounting layer data is a modified product of the European 

Environment Agency (EEA) from the original CLC inventory data by the Copernicus Land 

Monitoring Service as part of the Copernicus Programme. The accounting layer harmonizes 

inconsistencies between the 6-year updates of the original data for the purpose of creating a 

more solid basis for statistical time series analysis of land cover changes with CLC data.  

 

In the following, the underlying approach for rendering CLC accounting layer LC data 

comparable with GLOBIOM is outlined: 

 

• Method: the CLC accounting layer data in raster format for 2000 and 2012 have been 

merged, i.e., one layer that reports per 100x100 meter pixel CLC classification code 

for 2000 and 2012. Hence, if 𝑐𝑙𝑎𝑠𝑠𝑖,2000 = 𝑐𝑙𝑎𝑠𝑠𝑖,2012 no change and vice versa, if 

𝑐𝑙𝑎𝑠𝑠𝑖,2000 ≠ 𝑐𝑙𝑎𝑠𝑠𝑖,2012 an LC change was observed, where 𝑖  ∈

 {𝐴𝑙𝑙 𝐶𝐿𝐶 𝑃𝑖𝑥𝑒𝑙𝑠} and 𝑐𝑙𝑎𝑠𝑠  ∈  {𝐿𝑒𝑣𝑒𝑙 3 𝐶𝐿𝐶 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}. 

• Spatial aggregation: LU class transitions in CLC from the original 100x100 meter 

resolution projected in CRS EPSG:3035 - ETRS89-extended / LAEA Europe have been 

aggregated to reprojected 5 arcminute resolution by area coverage of the former in 

the latter.  

• Thematic aggregation: Level 3 CLC classification has been mapped to the thematic 

resolution of GLOBIOM, i.e., cropland (CrpLnd), other agricultural areas (OthAgri), 

forest (Forest), grassland (GrsLnd), other natural lands (OthNatLnd), not relevant 

(NotRel) and urban areas (Urban)9. 

 

In order to understand the background and differences of observed LUC and GLOBIOM in 

Europe, the following flow graphs in Figure 26 show transitions in total area in terms of 

GLOBIOM LU classes. On the left-hand side, based on CLC information aggregated to GLOBIOM 

 

8 https://www.eea.europa.eu/data-and-maps/data/corine-land-cover-accounting-layers 

9 See Annex Table A1 for the mapping between GLOBIOM and CLC classification. 
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classes, and on the right-hand side from a GLOBIOM simulation. In this representation, 

transitions from and to CLC forest classes Broad-leaved forest, Coniferous forest, and Mixed 

forest (Level 3 CLC classification code: 311, 312, 313) based on the CLC LC class Transitional 

woodland-shrub (324) have been excluded. This class inflates transitions from other natural 

lands (OthNatLnd) to forests and vice versa to such a degree that ambiguous identification 

from raw satellite imagery data to the forest classes and Transitional woodland-shrub in CLC 

Accounting Layer data cannot be ruled out with certainty.  

 

 

Figure 26 Flow graphs of CLC Accounting Layer data at GLOBIOM thematic aggregation (left) and 
GLOBIOM reference projection (right) between 2000–2012 time steps. Flow graphs based on CLC 
data are without CLC class Transitional woodland and shrub. The top plot shows all GLOBIOM classes 
and the bottom plot focuses on endogenous GLOBIOM classes in CLC data.  
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Figure 26 reaffirms the belief that urban expansion is a major driver of LUC in developed 

regions, e.g., Europe, and as such, displaces other LU types that might be expanding in other 

locations. For this reason and, in particular, considering GLOBIOM assumes urban areas to be 

static over time, adjusting LUC for the effect of urban displacement might lead to a more 

precise representation of actual LUC. 

 

This adjustment is being calculated with the following assumptions in mind: i) transitions from 

urban to a given endogenous LU class are considered a direct compensation of urban 

expansion from this LU class, i.e., net urban displacement, ii) urban displacement is offset, not 

necessarily in the same higher spatial resolution location urban expansion can be identified to 

have occurred at but some other location inside some meaningful lower resolution aggregate, 

i.e., a country level, and iii) one particular transition from a given endogenous LU class to urban 

cannot be traced to a particular transition to this same LU class in some other location nor to 

some non-urban LU class from where it emerged.  

 

Given these assumptions, the urban displacement adjustment is computed as follows: 

i. Calculate the sum of transitions to urban by LU class from (and vice versa) for each and 

over the spatial aggregate country. 

ii. Obtain net transition to urban per other LU class by subtracting inflows to urban from 

outflows from urban (per LU class) for each country. 

iii. Allocate the urban net transitions within each country from a certain LU by subtracting 

their mean over the lower spatial aggregates within each country and all non-urban 

inflows from the latter. 

 

The following plots (Figure 27, Figure 28, Figure 29, and Figure 30) report quantiles of the 

percentage share of area change from the initial area of the outflowing LU class in the year 

2000 per European supranational GLOBIOM region for each transition pair, i.e., from a certain 

endogenous LU class in GLOBIOM to all other endogenous LU classes. Excluded are spatial 

units with less than 10 ha total area. Displaying quantiles10  instead of visualizing the full 

sample of each European supranational region and transition pair adds clarity and transports 

some sense of their distributional properties. 

 

The right-hand side panels report values based on the urban displacement adjustment, and 

the left-hand side panel values without urban displacement adjustment. Per row, the panels 

report the inflowing LU class per transition pair. 

 

 

10 More specifically, the 5th ,16th ,25th, median , 75th, 84th, and 95th quantiles. 
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Generally, one can observe that urban adjustment shifts the sample distribution to the left, 

i.e., less area transitioning and even to negative values, implying urban displacement is larger 

than the area inflowing to a LU class without adjustment. 

 

Figure 27 Quantiles of observed net per cent changes from cropland to forests, grasslands, and other 
natural lands. Y-axes show European GLOBIOM regions and the x-axes value of net percentage change. 
The left-hand (right-hand) plots results are not adjusted (adjusted) for urban displacement. 

Looking in particular at outflow shares from cropland to forests, grasslands, and other natural 

lands and their unadjusted quantile values, it is evident that over all transition pairs and 

regions are a large part of their samples range between values of 0-1% of area change with 

some outlying 95th-quantile values. However, for the transition pair cropland to grassland and 

the Central east and Baltic regions, the sample distribution stands out as its more dispersed 

and ranges from the median to the 95th above 1% to 8%. Switching attention to the urban-

adjusted samples, it appears that urban displacement has a limited effect on the share of area 

change from cropland as it shifts the distribution of the samples only marginally.  

 

For GLOBIOM, the maximum allowed area to expand from cropland is globally set to 99% of 

the initial cropland area. Evidently, this magnitude is not captured in the observed range of all 

samples. This assumption is needed in the case of agricultural production, represented by 
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cropland areas in GLOBIOM, which becomes economically infeasible and, thus, cropland areas 

convert fully out of the simulation. Unsurprisingly, such a drastic situation has not been 

observed in Europe according to CLC data and, for that matter, is not expected to be occurring 

in GLOBIOM. 

 

Figure 28 Quantiles of observed net per cent changes from grassland to cropland, forest, and other 
natural lands. Y-axes show European GLOBIOM regions and the x-axes value of net percentage change. 
The left-hand (right-hand side) plots results are not adjusted (adjusted) for urban displacement. 

 

The general picture differs for the transition pairs grassland to cropland, forest, and other 

natural land. Apart from inflows to the forest, the sample values are more spread out, and 

most observations range between 0% and 2%. In particular, in northern Europe (EU_North 

and EU_Baltics) and transitions from grassland to cropland, quantile values indicate to a larger 

degree changes in the range of 2% to 8% of the initial grassland area. Moreover, the effects of 

urban expansion shift the sample distribution to the left to a larger degree than for cropland.  

 

Specifically, for the set of EU27 countries in GLOBIOM, the multiplier governing the maximum 

allowed area to transition from grassland defaults to 2% of the initial total grassland area. In 

particular, for inflows to cropland and northern and eastern Europe (RCEU), this value sits well 

inside the range of their observed samples, with the 75th and 50th quantile, respectively, 
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being close to 2%. This value is guided by European policy requirements, which, for instance, 

virtually prohibit conversion from permanent grasslands to cropland. In general, these 

empirical results suggest that the default assumption in GLOBIOM for transitions from 

grassland to cropland and other natural land are reasonably chosen. Nevertheless, they also 

suggest choosing different values in both directions, i.e., lower and higher, for the maximum 

area allowed for LUC in GLOBIOM might be worthwhile to explore for the LU class grassland, 

especially in certain regions.  

 

Figure 29 Quantiles of observed net per cent changes from forest to cropland, grasslandand, and 
other natural lands. Y-axes show European GLOBIOM regions and the x-axes value of net percentage 
change. The left-hand (right-hand side) plots results are not adjusted (adjusted) for urban displacement. 

 

Not unexpected, the transition dynamics from forest to the remaining endogenous GLOBIOM 

classes are shallow across all samples and, excluding the 95th quantile outlier in the southern 

European region, are well below 1% of forest area change to all three other receiving LU 

classes: cropland, grassland, and other natural lands. Accounting for urban displacement, 

almost all observations are below 0.5%.  
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Depending on the version of GLOBIOM, outflows from forest to other endogenous LU classes, 

i.e., deforestation, are not allowed. The observed results are, to some degree, in accordance 

with the assumption of deforestation merely being a minor factor in Europe. 

 

Figure 30 Quantiles of observed net per cent changes from other natural lands to cropland, forest, 
and grassland. Y-axes show European GLOBIOM regions and the x-axes value of net percentage change. 
The left-hand (right-hand side) plots are not adjusted (adjusted) for urban displacement. 

 

Similar to the forest dynamics, observed changes from CLC classes considered as other natural 

lands in GLOBIOM rarely exceed 0.6% of initial coverage in the year 2000, and urban expansion 

drives that effect even further to the left.  

 

As for grassland, the maximum parameter is set to 2% in GLOBIOM. In contrast to grassland, 

however, the above results indicate that observed LUC from other natural lands is solidly 

below 2%. Regarding reassessing this assumption in GLOBIOM, the results imply taking values 

between 0.2% and 0.8% into account when searching the parameter space and calibrating 

GLOBIOM to observed data. 
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In summary, observed LUC from CLC Accounting layer data between 2000 and 2012 is 

generally less than 1% of the outflowing LU area. Nevertheless, dynamics from grassland, 

especially in north-eastern regions, show more dispersion in their samples. Unsurprisingly, the 

results from applying adjustment for urban areas strongly indicate urban areas as expanding 

and displacing endogenous LUC dynamics by reducing its magnitude as the distribution of 

observed LUC transitions as shares of initial outflowing LU area in the year 2000 shifts to left 

across all regions and transition pairs.  

 

Shifting attention to the potential of calibrating the maximum parameter in GLOBIOM to 

observed data, results are most promising for endogenous LU classes grassland and andother 

natural lands. In both cases, the corresponding samples of observed LUC are in their range of 

values either reasonably close or include the default setting of GLOBIOM for European 

countries. However, the opposite is true for LUC outflowing from cropland. Here, the range of 

observed values and what is assumed in GLOBIOM differ to the degree that renders calibration 

questionable as it interferes with essential mechanics in the GLOBIOM model. Moreover, the 

special case in GLOBIOM of forest or, more specifically, deforestation being ruled out in 

Europe is largely in line with the observed quantities being close to zero over all samples.  

 

Lastly, this exercise shows potential insights into how GLOBIOM can be adjusted to 

incorporate real-world observations regarding the maximum area allowed for transition. 

However, it must be noted that the assumption of the actual potential maximum area 

available for LUC might not have been fully exhausted in real-world processes as observed 

from CLC Accounting layer data or other satellite data. Hence, these results must be taken as 

a guiding exploration into the underlying assumptions of GLOBIOM and not a disproof of them.  

4.2 Estimating crop substitution/transformation parameters based on FADN 
data 

The macro-level land-use allocation model GLOBIOM explicitly covers the production of each 

of the 18 world major crops, though, within Europe, only ten are considered major crops. Each 

of these crops can be produced under four different management systems, depending on the 

individual profitability of each. The main management systems are high-input irrigated, high-

input rainfed, low-input rainfed, and subsistence farming.  

 

Each farming system and crop type is associated with a specific crop yield. The EPIC model 

generates crop yields at the grid cell level based on soil, slope, altitude, and climate 
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information11 . Within each management system, the input structure is fixed following a 

Leontief production function.  

 

The main mechanism of how crop yields can change endogenously is by switching to another 

management system while producing the same crop in the same grid cell, switching the crop 

type while staying in the same management system and grid cell, or switching to a more or 

less productive grid cell outright while producing the same crop with the same management 

intensity. Besides the endogenous mechanisms, an exogenous component representing the 

long-term technological change is also considered. The endogenous crop conversion between 

two-time steps of the GLOBIOM model (covering ten years) can be summarised by the 

following boundary conditions of the model: 

 

 

∑ 𝑥𝑖,𝑐,,𝑟,𝑚,𝑡+1

𝑀

𝑚=1

 ≤  𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐 ∑ 𝑥𝑖,𝑐,𝑟,𝑚,𝑡

𝑀

𝑚=1

 

∑𝑥𝑖,𝑐,,𝑟,𝑚,𝑡+1

𝐶

𝑐=1

 ≤  𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑠𝑦𝑠𝑟,𝑚∑𝑥𝑖,𝑐,𝑟,𝑚,𝑡

𝐶

𝑐=1

 

(3) 

 

where 𝑥𝑖,𝑐,𝑟,𝑚,𝑡 denotes the area of crop 𝑐 (with 𝑐 = 1, … , 𝐶) at time 𝑡 in grid cell 𝑖 and region 

𝑟 under management system 𝑚 (with 𝑚 = 1,… ,𝑀). It is trivial to see that the exogenous 

parameters 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐 and 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑠𝑦𝑠𝑟,𝑚 define the boundaries of crop and management 

system expansions within a given time step. 

 

The goal of this subtask is to improve the consistency of the endogenous crop yield updates 

with farm-level models by calibrating coefficients regulating the maximum allowed crop 

substitutions (𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐), as well as the maximum allowed management system transitions 

(𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑠𝑦𝑠𝑟,𝑚) based on observed farm-level data stemming from the FADN database. 

 

For the empirical analysis to estimate GLOBIOM’s parameters, we use the same dataset as 

detailed in Subsection 3.1. This is the observed crop farms from the FADN database from 2007 

to 2018. Our dataset covers the EU 27 Member States (MS) and the UK. As with the costing 

analysis, our utilized sample focuses on farms with crop farming as their primary production 

and is selected based on the EU's Type of Farm (TF14) grouping. This includes specialized 

 

11  See 
https://iiasa.ac.at/web/home/research/researchPrograms/EcosystemsServicesandManagement/EPI
C.en.html 
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cereal, oilseed, and protein crop (COP) farms (TF14= 15), other field crops (TF14= 16), mixed 

crop farms (TF14= 60), and mixed crop and livestock farms (TF14 = 80).  

 

Regarding the crops, we mainly focus on the major crops within the GLOBIOM model and 

prevalent in the EU. These are barley, dry beans, corn, cotton, potatoes, rapeseed, rice, 

soybeans, sunflower, and wheat. The management systems are defined using the FADN data 

on fertilizer and crop protection expenditures, as outlined in Subsubsection 3.2.2. Our study 

covers 5 European supranational regions within the GLOBIOM model. These are: EU_Baltic, 

EU_CentralEast, EU_MidWest, EU_North, and EU_South. 

 

 

Figure 31 Estimation results of maximum crop system expansion parameter (MAXCROPSYS) based 
on FADN data between 2007-2010 and 2015-2018 averages. Y-axes show crop systems, i) low intensity 
(LI), ii) high intensity (HI), and andiii) irrigated (IR), x-axes percentage change, and per European 
GLOBIOM region. The triangle symbol represents the GLOBIOM baseline value and the round dots 
quantiles and means of estimated values. 
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To empirically estimate the maximum crop conversion coefficients ( 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐  and 

𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑠𝑦𝑠𝑟,𝑚), we calculate the average crop area growth per farm 𝑗 for the years 2007 – 

2010 to the years 2015-2018. These are eight-year growth rates, which is close to the decadal 

representation of GLOBIOM. Averaging over the years is done to avoid counting multi-

cropping or crop rotations as structural crop area changes. Note that the considered crop area 

is sample adjusted using FADN’s sampling weights. This last step is necessary as FADN is only 

a survey of farms. 

 

In a further step, we summarise all growth rates of farms in a given GLOBIOM region. As 

summary measures, we consider the mean, median, as well as 5th, 25th, 75th, and 95th 

percentiles. These summary measures serve as empirically estimated ranges of observed crop 

changes and can be used as extreme values for maximum allowed changes. Figure 31 and 

Figure 32 summarise the results, respectively. 

 

Figure 32 Estimation results of maximum crop type expansion parameter (MAXCROP) based on 
FADN data between the 2007-2010 average and 2015-2018 average. Y-axes show crop types, x-axes 
percentage change, and per European GLOBIOM region. The triangle symbol represents the GLOBIOM 
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baseline value, round dots quantiles, and mean of estimated values. Crop types considered are Barl 
(Barley), BeaD (dry beans), Corn (corn), Cott (cotton), Pota (potatoes), Rape (rapeseed), Rice (rice), Soya 
(soybeans), Sunf (sunflower), Whea (wheat). 

The comparison between FADN and GLOBIOM maximum crop and management system 

parameters confirms that overall, GLOBIOM reproduces well the average of recent (2000 to 

2020) developments across systems and crops in the EU. Nonetheless, there are some 

exceptions, such as the expansion of irrigated systems in the southern and eastern regions, 

where GLOBIOM’s assumptions of maximum systems expansion are below even the mean and 

median observed expansion. The same is true for certain crops in the EU’s south, baltic and 

eastern regions. While crops such as rapeseed and soybeans are only a small part of the 

production, it seems that wheat expansion in the Baltics was more pronounced over the study 

period as GLOBIOM would allow.  

 

An additional note is that GLOBIOM “maxcrop” and “maxcropsys” parameters represent 

maximum expansion boundaries. Thus, it might be reasonable to set them higher as the 

observed mean or to allow for mechanisms of additional maximum expansion in reaction to 

more extreme climate change or socio-economic scenarios. 

4.3 A validation tool for the macro-level model GLOBIOM dynamics to official 
datasets 

GLOBIOM aims to capture the real-world dynamics of LU and LUC. Since its inception, it has 

been steadily improved to broaden its applicability for policy analysis and enhance its 

representation of reality. However, as with any scientific model, GLOBIOM necessarily 

abstracts from reality to simplify complicated systems, but at the same time, a desirable 

feature of any model is to predict real-world or empirical observations well, such as official 

datasets. Furthermore, GLOBIOM in itself is a complex model and outputs across many 

dimensions. This poses a problem for GLOBIOM modellers when deciding whether certain 

augmentations to the model improve its performance (with regard to matching official 

datasets) or not. In this subtask, a summary statistic for this purpose is presented, and its 

capability is showcased. Ultimately, GLOBIOM modellers are equipped with a validation tool 

to support their modelling choices.  

 

The validation tool is essentially a script that compares the projections from an input 

GLOBIOM run to FAOSTAT data harmonized to GLOBIOM aggregates over intersecting 

(observed in both data sources) dimensions, i.e., items, variable types, units of measurement, 

and regions.  

Since FAO data are reported on a yearly basis, ten-year time step projections from GLOBIOM 

are linearly interpolated to yearly observations. In this manner, the trend character of 

GLOBIOM projections is preserved by treating its 10-year projections as predictive of yearly 



 
D5.2 REPORT ON IMPROVEMENTS TO THE CURRENT EU AND GLOBAL MODELS  

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

 
73 

 

 

observations. At the same time, a 5-year moving-average is applied to FAO yearly observations 

to extract the trend component of the time series data. While a rough estimate to the trend 

component, taking the moving average of the FAO data smooths out yearly spikes, which 

might not be representative of the trend dynamics GLOBIOM ultimately aims at reproducing. 

The chosen measure of performance is the root mean squared deviation (RMSD) given by: 

 

 
 𝑅𝑆𝑀𝐷(𝑖,𝑣,𝑢,𝑟) =

√
∑ (𝑥(𝑖,𝑣,𝑢,𝑟,𝑡)

𝐹𝐴𝑂 − 𝑥(𝑖,𝑣,𝑢,𝑟,𝑡)
𝐺𝐿𝑂 )

2𝑇
𝑡=1

𝑇
 (4) 

 

where 𝑥(𝑖,𝑣,𝑢,𝑟,𝑡) denotes the value 𝑥 of a given item 𝑖 , of variable type 𝑣  , and unit of 

measurement 𝑢, in GLOBIOM region 𝑟 at time 𝑡 and the superscripts 𝐹𝐴𝑂  (respectively 𝐺𝐿𝑂 ) 

indicate their source. The time horizon 𝑡 = 1,2, … , 𝑇  represents the shared data points of FAO 

and (interpolated) GLOBIOM observations. Currently, in this application, 𝑡 = 1  indicates the 

year 2000 and 𝑡 = 𝑇 year 2020 for almost all cases.  

 

FAOSTAT data is taken from three FAO sources: i) supply and utilization accounts (SUA)12, ii) 

food balance (FB) 13  sheets, and iii) the PRODSTAT (PS) i14  database related to production 

statistics. The latter two augment, where necessary, the SUA database because the definition 

of the SUA products are no longer documented and reproducible. Taken together and 

harmonized to GLOBIOM regions and items, the final FAOSTAT dataset covers 978 unique 

combinations across types of variables, units of measurement, and items for 79 GLOBIOM 

regions/countries15. As stated above, even though some time series carry data before 2000, 

the time dimension for this application ranges from 2000–2020. The values from 2000–2019 

are straight from the FAOSTAT dataset, and the 2020 values are linearly extrapolated. For an 

overview of available items, variable types, and units of measurement, as well as regions (and 

their constituting countries), the interested reader is referred to Annex Table A1 and Table 

A2.  

 

 

12 https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-
systems/supply-utilization-accounts-and-food-balance-sheets-background-information-for-your-
better-understanding/en/ 

13 https://www.fao.org/faostat/en/#data/FB 

14 https://www.fao.org/faostat/en/#data/QCL 

15  The 978 unique combinations as well as the 79 unique combinations include double counting 
information, when one variable type is a combination of some others, e.g. import, export and net 
export, or some region is a superset of smaller regions, i.e. World, OECD, EU28, etc. 

https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/supply-utilization-accounts-and-food-balance-sheets-background-information-for-your-better-understanding/en/
https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/supply-utilization-accounts-and-food-balance-sheets-background-information-for-your-better-understanding/en/
https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/supply-utilization-accounts-and-food-balance-sheets-background-information-for-your-better-understanding/en/
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In time series analysis, RMSD is a frequently used measure to summarize the deviation of 

predicted – here projected – and observed values, where larger deviations are magnified 

through the square term. Hence, it is sensitive to outliers. 

 

The RMSD is always non-negative; a value of 0  (almost never achieved in practice) would 

indicate a perfect fit. In general, a lower 𝑅𝑀𝑆𝐷  is better than a higher one. Usually, the 

𝑅𝑀𝑆𝐷  is used for models rather than data comparisons since it is dependent on the scale of 

the data used. This means comparisons across regions and items are being computed 

separately. 

 

However, since the RSMD is usually applied to assess forecast performance of empirical time 

series models, its applicability to long-horizon partial-equilibrium models with many output 

variables across many dimensions, e.g., regions, items, units of measurement, such as 

GLOBIOM, is limited. For this reason, whether some model modification to GLOBIOM is 

improving its performance with regards to FAOSTAT data is being assessed in comparison to 

a baseline specification of GLOBIOM, i.e., without changes. Thus, given the 𝑅𝑆𝑀𝐷 measure 

above, the model comparison is computed as follows: 

 

 𝑀𝑅𝑀𝑆𝐷 =
𝑀𝑎𝑑𝑗

𝑀𝑏𝑎𝑠𝑒
=
∑ ∑  ∑ ∑ 𝑅𝑆𝑀𝐷(𝑖,𝑣,𝑢,𝑟)

𝑎𝑑𝑗𝑅
𝑟=1

𝑈
𝑢=1

𝑉
𝑣=1

𝐼
𝑖=1

∑ ∑  ∑ ∑ 𝑅𝑆𝑀𝐷(𝑖,𝑣,𝑢,𝑟)
𝑏𝑎𝑠𝑒𝑅

𝑟=1
𝑈
𝑢=1

𝑉
𝑣=1

𝐼
𝑖=1

 (5) 

 

where the superscript 𝑎𝑑𝑗 indicates some modified GLOBIOM specification and 𝑏𝑎𝑠𝑒 its 

baseline version. The 𝑅𝑀𝑆𝐷 ‘s for each are summed over all (or some subset of), and items 

𝑖 = 1,2, … , 𝐼  , variable types 𝑣 = 1,2, … , 𝑉, units of measurement 𝑢 = 1,2, … , 𝑈, and regions 

𝑟 = 1,2, … , 𝑅.  

Unsurprisingly, if 𝑀𝑎𝑑𝑗 = 𝑀𝑏𝑎𝑠𝑒 the fraction above equals  1.  If 𝑀𝑅𝑀𝑆𝐷 < 1, one can safely 

assess the model adjustment improved the performance of GLOBIOM with regards to 

FAOSTAT data over the baseline version and vice versa, 𝑀𝑅𝑀𝑆𝐷 > 1  indicates worsening 

performance.  

 

The following Figure 33 shows the results of an exercise of applying the 𝑀𝑅𝑀𝑆𝐷measure to 

GLOBIOM. The setup of this exercise is as follows:  

• Draw 99 times each of the 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐 parameters estimated in section 4.2 from 

uniform distributions with boundaries of ±
2

3
 times and from the respective GLOBIOM 

baseline values for each supranational EU region.   

• In addition, the baseline values are included for a total sample of 100 iterations of the 

𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐 parameters under consideration.  
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• With this sample, the GLOBIOM model is run 100 times for each respective iteration, 

and their corresponding outputs are subsequently passed over to the validation script. 

 

Plotted in Figure 35 are the natural logarithm of the resulting  𝑀𝑅𝑀𝑆𝐷𝑠 for each EU GLOBIOM 

region and all available items, variable types, and unit of measurement combinations. In the 

notation of equation (5), this means per EU region 𝑟 16: the number of items  𝐼 is equal to the 

number of available items, number of variable types 𝑉 as well as units 𝑈. In total, the available 

count of unique combinations for comparison between three dimensions ranges between 95 

(EU_Baltic) and 118 (EU_South). Lastly, the first plot in Figure 35 shows the resulting 𝑀𝑅𝑀𝑆𝐷𝑠 

measures for the whole EU. 

Applying the natural logarithm to 𝑀𝑅𝑀𝑆𝐷 eases the comparison between values indicating the 

same magnitude of improving and declining performance. For example, if ln (𝑀𝑅𝑀𝑆𝐷) 

equates to positive (negative) 1, the numerator  𝑀𝑎𝑑𝑗  is  ~2.7 times larger (smaller) than the 

denominator 𝑀𝑏𝑎𝑠𝑒. 

 

 

16 Essentially, omitting the summation over 𝑅 in equation (5). 
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Figure 33 RMSD measure of 100 GLOBIOM runs with sample 𝒎𝒂𝒙𝒄𝒓𝒐𝒑𝑟,𝑐–input. Y-axes depict the 

natural logarithm of 𝑀𝑅𝑀𝑆𝐷, x-axes from left to right are 100 sample runs of 𝑀𝑎𝑑𝑗, with run 1 being 
the baseline. Results are for the whole EU region (first plot) as well as for each EU GLOBIOM 
subregion (following plots). 

 

In general, the plots for each EU region paint an expected picture. While some iterations of randomly 

drawn 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐  parameter values lead to improved performance (negative values), others indicate 

deteriorating performance (positive values). However, the distribution between positive and negative 
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values varies between regions. In particular, the Baltic and Southern European regions are responding 

with improved performance to variations in the 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐 parameter, while in the other regions, the 

results are less impressive. Exemplary here is the GLOBIOM region EU_MidWest, which lacks 

noteworthy performance gains against FAOSTAT data with almost no runs leading to a performance 

measure 𝑀𝑅𝑀𝑆𝐷 of less than 1.  

Focusing on the aggregate results for the EU (first plot), it becomes apparent that improving 

performance in one region does not necessarily translate to improved performance over the aggregate. 

This means the results of each region tend to offset each other when taken together. It is vital to 

understand here that in GLOBIOM, each region interacts with each other via trade linkages, and while 

some regions are responding well to changes to the 𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐  parameter in terms of optimizing the 

relative performance gains to the baseline. This could also lead to decreased performance in other 

regions. For instance, GLOBIOM might decide with one parameter iteration to allocate the production 

of food products more efficiently in the Baltic region, matching FAOSTAT data along this dimension 

more closely. At the same time, aggregate demand in consumption, e.g., in EU_MidWest, is served by 

exports from the Baltic region to a larger degree, and domestic production in EU_MidWest is reduced. 

Moreover, for similar reasons, improved performance  in one region might not correlate with the 

𝑚𝑎𝑥𝑐𝑟𝑜𝑝𝑟,𝑐  parameter iteration in the same region, but parameter values somewhere else.  

The next section outlines an approach to disentangle the complex interaction effects of GLOBIOM in 

this regard. Ultimately, this effort could lead to a computationally more efficient way to search the 

parameter space in GLOBIOM to calibrate it to match official datasets more precisely without running 

the computationally intensive simulation of GLOBIOM.  

4.4 A prototype calibration method of the macro-level model GLOBIOM to 
micro-econometric estimates 

In this subtask, a prototype workflow for calibrating GLOBIOM is presented, where a machine 

learning approach is employed to approximate the functional form of GLOBIOM. The machine 

learning model utilized is the so-called Bayesian Additive Regression Trees (BART) model. 

Since first introduced by Chipman et al. (2010), the BART model has been a staple in the 

machine learning literature due to its remarkable ability to approximate unknown functions 

𝑓 , relative ease of use, and flexibility. In principle, similar to other ensemble models, BART is 

a sum-of-tree model, where each tree partitions the input space in order to explain only part 

of the output. Prone to overfitting, regularization priors ensure that these decision trees 

remain simple in their structure, i.e., representing only a limited subset of relationships 

between covariates and the output variable. In the literature, these shallow regression trees 

are referred to as weak learners, and by summing over many of these so-called weak learners, 

BART excels single complex models, e.g., multivariate regression methods, in their predictive 

performance. 
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In detail, the BART model is defined as approximating the unknown function 𝑓 of an input 𝑋 

to predict a response 𝑦 as follows: 

 

 𝑦 = 𝑓(̅𝑋) + 𝜀 =∑𝑣(𝑋|𝑇𝑠, 𝜇𝑠) + 𝜀,

𝑆

𝑠=1

      𝜀~𝑁(0, 𝜎2) (6) 

 

where 𝑣 denotes a tree function that takes an 𝑁 × 𝐾-matrix 𝑋 as input and outputs according 

to a tree structure 𝑇𝑠 and 𝑏𝑠 terminal nodes in the set 𝜇𝑠 = {𝜇1
𝑠, … , 𝜇𝑏𝑠

𝑠 }. Each tree structure 

𝑇𝑠  is a set of splitting rules, i.e., internal nodes, of the form 𝑥𝑗 ≤ 𝑐𝑖 or 𝑥𝑗 > 𝑐𝑖  – with 𝑥𝑗 

denoting the 𝑗𝑡ℎ column in 𝑋 and 𝑐𝑖 being a threshold parameter.  

 

 
Figure 36 Example of a single tree function. The left-hand side shows an example decision tree 

structure 𝑇𝑠, with 𝑖 = 1,2, and the right-hand side depicts the corresponding partitioning of 

the input space of  a single 𝑥𝑗 to explain a part of 𝑦.  

 

Figure 30 illustrates the behaviour of such a tree function. The left-hand plot gives an example 

of how sequences of splitting rules lead to terminal nodes, and the tree function returns their 

corresponding terminal node parameter value. The tree structure begins with the first splitting 

rule 𝑥 ≤ 𝑐1, if its condition is met, the sequence either ends in the terminal node 𝜇1 = 1.9 or 

moves on to the next splitting rule and ends in terminal nodes 𝜇2 = 1.1  or 𝜇3 = 0.1 

depending on 𝑥 ≤ 𝑐2. The right-hand side illustrates the manner, such as splitting rules to 

partition the input space and explain part of the response.  

While a single tree function in itself is able to represent complex interaction effects between 

elements in 𝑋, summing over many tree functions easily incorporates additive effects and thus 

equips BART with exceptional representational flexibility – and increasingly so in the number 
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of trees 𝑆17. However, increased flexibility also implies proneness to over-fitting, which limits 

the designed capability of BART to approximate unknown functions. In this regard, one major 

feature of concern is precisely the potential depth, i.e., the number of consecutive splitting 

rules that each tree function may develop in its structure by introducing spurious multivariate 

combinations as well as dominating the total sum of terminal node parameters. Given the 

illustration in Figure 30, it is easy to think about a tree structure that partitions each single 

data point in  𝑥  to one response value. Consequently, regularization priors on the tree 

structure 𝑇𝑠 ensure that each tree remains simple in its form.  

 

Treating GLOBIOM as an unknown function of its inputs, e.g., the parameters discussed in the 

exercises above, to its output variables and utilizing data generated in lieu of a simulation 

setup, BART is applied to approximate its form. The simulation setup implies running the 

GLOBIOM model 𝑁  – times with variation over 𝐾 parameters. More specifically, the data 

generated is an 𝑁 × 𝐾 input matrix and 𝑁 – vectors 𝑦 of GLOBIOM output variables. The BART 

model is trained on the sampled parameter values as covariates in 𝑋 to explain the variation 

in a single response 𝑦  of GLOBIOM.  

 

On the one hand, the BART framework then allows for the analysis of the effects of covariates 

in 𝑋  on the outcome. However, due to the nature of BART as a non-parametric or black-box 

model, such inference cannot be drawn directly but must be retrieved via, for example, 

Friedman’s partial dependence function (Friedman, 2001), which summarizes the marginal 

effect a covariate or subset of covariates has on the response. In this fashion, the influence of 

each parameter on the chosen response can be assessed, conditional on the remaining set of 

covariates.  

 

On the other hand, the BART model allows for searching the input space of 𝐾 – parameters to 

efficiently calibrate these parameters to some desired level of a given performance measure, 

e.g., the RMSD measure presented in subtask. One key advantage is that a trained machine 

learning model is more efficient in terms of computing time than searching the parameter 

space directly via running GLOBIOM for a large sample of potential parameters to calibrate.  

 

In detail, the calibration procedure is then setup as follows: 

(1) Sample 𝑁×𝐾 matrix 𝑋 of GLOBIOM parameter values from selected and sensible 

distributions, where one row in 𝑋 carries values corresponding to the baseline setting 

of GLOBIOM. 

 

17 In most applications, the number of trees  𝑆=200 has proven to be a robust choice with performance 
deterioriating with larger values of 𝑆. 
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(2) Run GLOBIOM 𝑁 – times with the sample input from (1) and obtain 𝑁 output values 

𝑐 over 𝐿 comparison variables documented in subtask 4.3, i.e., 𝑐  ∈  𝐶 = {𝑐1,…𝑐𝐿} 

(3) Run 𝐶 through the validation procedure presented in subtask 4.3 to obtain 𝑁 – times 

comparison measure 𝑀𝑅𝑀𝑆𝐷 and obtain 𝑦 = {𝑀1
𝑅𝑀𝑆𝐷 , … ,𝑀𝑁

𝑅𝑀𝑆𝐷}. 

(4) Train the BART model on input 𝑿 from (1)  and response 𝒚 from (3). 

(5) Sample a large number of parameters from the same distributions as in (1). 

(6) Use the trained BART model from (4) to predict the response variable 𝑦 based on the 

new input sample from (5).  

(7) Select from 𝑦 the lowest predicted values and corresponding parameter values.  

To assess the quality of the predicted selection of 𝑀𝑅𝑀𝑆𝐷 from (7), and thus, the fit of the 

BART model and its ableness to calibrate GLOBIOM, their corresponding parameter values can 

then be run through the actual GLOBIOM model and the resulting validation measures 

compared to the predicted selection. 

 

As a proof-of-concept exercise, Figure ? reports the results of calibrating GLOBIOM by 

variation over the maxcropsys-parameter. Given the detailed description of the calibration 

procedure above, the exercise is setup as follows: (1) sample 500-times values of the 

maxcropsys-parameter per European GLOBIOM region & management system from uniform 

distributions between 1.001 and 5, plus one baseline specification, (2) & (3) run GLOBIOM 

501-times and obtain log RMSD measure over all available comparison variables 𝐿, (4) train 

the BART model on training sample from (1) & (3), (5) sample 500000-times maxcropsys-

parameter values as in (1), (6) predict log RMSD measure with trained BART model from (4) 

and sample input from (5), (7) select 10 iterations with the lowest predicted mean of the log 

RMSD measure. 

 

To validate the predictive performance, the 10 sets of maxcropsys-parameter values leading 

to the lowest predicted mean of the log RMSD measure are replugged into GLOBIOM and run 

to obtain their actual log RMSD measure.  Figure 37 then shows the predicted mean and 99% 

confidence set as well as the actual log RMSD measure of these 10 sample runs. 

In practice, the BART R package (Sparapani et al., 2021) has been employed for training the 

model and predicting the responses 𝑦.  

 

The figure shows on the one hand the mean as well as the 99% confidence set of the predicted 

log 𝑀𝑅𝑀𝑆𝐷  measure (black dots & error bars) and the actual log  𝑀𝑅𝑀𝑆𝐷as resulting from 

running GLOBIOM with the same set of parameter values (green triangles). Out of the 10 

sampled iterations with the lowest predicted mean 7 actual values of the performance 

measure are within the 99% confidence set of the predictive distribution of the trained BART 

model. This indicates that the BART model reasonably well approximates the data generating 
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process of GLOBIOM to the log  𝑀𝑅𝑀𝑆𝐷measure with regards to variation in maxcropsys-

parameters  per European GLOBIOM region. Although 3 actual values are outside the lower 

tail of the predictive density, their values indicate a better comparative performance than 

predicted. While these outliers are somewhat unsatisfactory from a pure forecasting 

perspective, given the relatively small amount of training data (with 𝑁 = 501) and some 

indication of an upward bias in the BART-predictions (9 out of 10 actual values are well below 

their predicted mean counterparts) these results remain promising to further explore the 

capabilities of the BART model (or other machine learning methods) to calibrate GLOBIOM 

with respect to certain exogeneous parameter assumptions.  

 
Figure 37 Results of BART calibration exercise based on sample 𝒎𝒂𝒙𝒄𝒓𝒐𝒑𝒔𝒚𝒔𝑟,𝑐–input. 

Black dots indicate the mean & error bars the 99% confidence set of the predicted log RMSD 

measure (�̅�), green triangles indicate the actual log RMSD measure from GLOBIOM runs with 

the same parameter values. 
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5 IMPROVED ELASTICITIES OF TRANSFORMATION / 
IMPACTS ON PRODUCTIVITY COEFFICIENT 

5.1 Structural change representation in current models 

IFM-CAP: 

Structural change is defined as (Reimund et al., 1981): „a significant change in the ownership, 

control, and organizational characteristics of resources used in the production of a commodity 

or within a subsector.” Structural change applies to the whole sector or subsectors and is 

about the changes in one or more of the following distributions (further elaborated in Chavas, 

2001): 

1. Farm size (and economies of scale) 

2. Specialization (many outputs or one) 

3. Technology and farm organization 

 

IFM-CAP does not explicitly deal with structural change. All of the above characteristics of the 

farm are considered fixed across scenarios, so their distribution across farms does not change. 

 

Several authors highlight the relevance of incorporating structural change into policy 

evaluation models. Reidsma et al. (2015) say that structural change will influence the impacts 

and adaptation of the sector, and thus excluding it will possibly overestimate the effects of 

climate change. Espinosa et al. (2016) say that information about farm structural change is of 

great interest to policymakers and stakeholders and provides the basis for policy analysis. 

More specifically, she highlights that the new CAP design interacts with investment decisions 

and enter/leave decisions CAP. Zimmermann et al. (2009) also support that within the 

integrated impact assessment context, structural change is necessary to be included. It may 

significantly improve the validity of the social, economic, and environmental indicators. 

 

For this, including structural change in IFM-CAP will improve the model’s capabilities. In order 

to do so, we will apply a simple statistical land market mechanism to redistribute land. The 

available land for redistribution is provided by econometric exit estimations from WP4. 

 

5.2 Linkages to WP4 

In WP4, deliverable D4.2, a logit model is used to represent the binary decision of the farmer 

to exit the sector. The German Farm Structure Survey (FSS) survey is used and includes 

information on the farms that exited agricultural activity between 2010 and 2020.  
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Given a set of explanatory parameters (𝑥𝑖), the effect on the probability to exit is estimated 

(vector of coefficients 𝛽): 

 

 log (
𝑝(𝑒𝑥𝑖𝑡𝑖 = 1|𝑥𝑖, 𝛽)

1 − 𝑝(𝑒𝑥𝑖𝑡𝑖 = 1|𝑥𝑖, 𝛽)
) = 𝑥𝑖

′𝛽 + 𝜀𝑖  (7) 

 

One complication is that the set of explanatory variables in the FSS (including the neighbouring 

farms) is not always present in the IFM-CAP model. Further, some variables might be slightly 

differently defined. For instance, in IFM-CAP, the standard gross margins are derived with 

more costs than the standard gross margins used in the exit model. Finally, we use the 

following subset of common variables: 

Table 10 WP4 subset of variables used to estimate the exit probability with the IFM-CAP data. 

VARIABLE CODING IN EXIT 
MODEL 

TYPE OF 
VARIABLE 

Farm Type TiT15, …, TiT84 Categorical 

Organic farm organic1, organic3 Categorical 

NUTS2 C0010UG5xxx Categorical 

Total agricultural land used (hectare) C0240 Continuous 

Total agricultural land used squared (hectare) C0240_sq Continuous 

Livestock units C3391 Continuous 

Standard gross margin dedicated to general 

cropping per activity per hectare 

P1_sgm_Basis_ratio Continuous 

Standard gross margin dedicated to horticulture 

per activity per hectare 

P2_sgm_Basis_ratio Continuous 

Standard gross margin dedicated to permanent 

crops per activity per hectare 

P3_sgm_Basis_ratio Continuous 

Standard gross margin dedicated to grazing 

livestock and forage per activity per head 

P4_sgm_Basis_ratio Continuous 

Standard gross margin dedicated to granivores 

per activity per head 

P5_sgm_Basis_ratio Continuous 

Source: Own compilation. 

The estimations of the categorical variables shift the estimation intercept. The estimations of 

the continuous variables are multiplied with the corresponding IFM-CAP data to estimate the 

marginal effect on the probability to exit.  
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5.3 The simulation of land markets 

Direct land exchange between the FADN farms is not a good way to represent the exchange 

of land between the farms that exit and the farms that stay. It is very unlikely that the FADN 

farms are neighbouring farms; additionally, the weights of the farms cannot be used. 

 

For this, we will simulate the land market as a random process where the land a staying farm 

will receive depends on related farm characteristics. 

 

We select the farm’s gross margin as the characteristic that will determine how much land is 

allocated to the farm. In the future implementation, a better characteristic is the shadow price 

of land, possibly complemented with other farm properties. That requires running the model 

parametrically with a stepwise increase of the available land and recording the new gross 

margin. Alternatively, given sufficient data sources, an econometric model could provide 

information on the distribution of the land that a farm receives conditional on its farm 

characteristics. 

 

Nevertheless, we proceed with the farm gross margin as the characteristic that determines 

the allocation of land to farms. More specifically, we assume that the distribution of the share 

of land that a farm will receive follows the same distribution of the gross margins of the farm. 

We further assume that both distributions follow the same exponential distribution. Thus, for 

each NUTS2 area, we estimate the λ parameter of the exponential distribution. Figure 29 

shows an example of the gross margin distribution and the fitted exponential probability. We 

then allocate the share of land according to the estimated density function. This works 

because the sum of the density function equals 1. 

 

Figure 34 The distribution of the gross profit across farms for NUTS2=DEG0 (histogram) and the 
related fitted exponential distribution (red line). Source: Own compilation. Based on IFM-CAP FADN 
data. 
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5.4 Results 

The cumulative distribution of the probability to exit is given in Figure 35. Almost 25% of the 

farms have a 50% probability of exiting.  

 

 

Figure 35 Cumulative distribution of the probability to exit. Source: Own compilation. Based on IFM-
CAP FADN data. 

 

Assuming that 23% of the farms will exit, we choose the 23% of the farms with the highest exit 

probability. 18 The land freed from the farms per NUTS2 is as follows (given that the land is 

multiplied by the FADN weight): 

Table 11 Land to redistribute (in hectares) after the farms that will exit were estimated. 

NUTS2 ALL UAA TO LAND 
MARKET 

% 
 

NUTS2 ALL UAA TO LAND 
MARKET 

% 

DE11 532,320 95,217 18% 
 

DE92 352,067 66,904 19% 

DE12 168,060 13,326 8% 
 

DE93 1,019,909 27,867 3% 

DE13 82,740 3,887 5% 
 

DE94 749,990 88,565 12% 

DE14 463,787 37,924 8% 
 

DEA1 221,439 29,820 13% 

DE21 467,887 10,472 2% 
 

DEA2 189,043 34,268 18% 

DE22 454,196 30,525 7% 
 

DEA3 372,043 20,470 6% 

DE23 391,434 22,403 6% 
 

DEA4 379,864 35,122 9% 

DE24 344,462 37,773 11% 
 

DEA5 226,804 15,298 7% 

 

18 The average probability of a farm in 2010 to exit until 2020 is 23% (deliverable D4.2). 



 
D5.2 REPORT ON IMPROVEMENTS TO THE CURRENT EU AND GLOBAL MODELS  

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

 
86 

 

 

DE25 405,499 50,189 12% 
 

DEB1 201,753 17,010 8% 

DE26 457,227 68,568 15% 
 

DEB2 121,096 8,970 7% 

DE27 380,419 69,861 18% 
 

DEB3 320,974 76,915 24% 

DE40 1,403,232 3,877 0% 
 

DEC0 66,878 7,584 11% 

DE60 1,932 1,932 100% 
 

DED2 365,758 90,072 25% 

DE71 187,826 28,410 15% 
 

DED4 372,126 60,846 16% 

DE72 178,333 16,924 9% 
 

DED5 200,249 28,388 14% 

DE73 351,530 55,953 16% 
 

DEE0 1,299,145 76,781 6% 

DE80 1,436,422 60,518 4% 
 

DEF0 918,261 481,848 52% 

DE91 265,523 31,401 12% 
 

DEG0 845,390 551 0% 

Source: Own compilation. Based on IFM-CAP FADN data. 

Table 11 presents, in total agricultural land use (UAA), the amount of freed land from exiting 

farms and the share of freed land to total agricultural land. One can see that the share of land 

from the exiting farms is heterogeneous between the NUTS2 regions. For instance, among the 

larger NUTS2 regions in terms of total agricultural land, DEF0 frees almost 50% of the 

agricultural land, whereas the largest NUTS2 region (DE40) has only negligible values. In DE60, 

the smallest NUTS2 region, all farms exit the sector. 

 

Table 12 Gini coefficient of the distribution of land before and after farm exit. 

NUTS2 BEFORE 
EXIT 

AFTER EXIT 
 

NUTS2 BEFORE 
EXIT 

AFTER EXIT 

DEF0 0.382 0.315 
 

DE27 0.281 0.285 

DEA3 0.281 0.275 
 

DE22 0.288 0.285 

DEA2 0.249 0.248 
 

DE21 0.310 0.308 

DEA4 0.304 0.294 
 

DE24 0.212 0.221 

DEA1 0.345 0.271 
 

DE11 0.411 0.296 

DEA5 0.343 0.324 
 

DE93 0.377 0.326 

DE94 0.369 0.341 
 

DE92 0.341 0.312 

DEB3 0.521 0.281 
 

DE91 0.292 0.268 

DEB2 0.308 0.251 
 

DEG0 0.545 0.527 

DEB1 0.384 0.298 
 

DE71 0.293 0.288 

DEC0 0.266 0.257 
 

DE26 0.397 0.299 

DEE0 0.558 0.518 
 

DED2 0.525 0.414 
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DE80 0.509 0.488 
 

DED5 0.553 0.459 

DE40 0.418 0.411 
 

DED4 0.532 0.470 

DE72 0.296 0.287 
 

DE13 0.424 0.319 

DE73 0.284 0.273 
 

DE12 0.485 0.273 

DE25 0.287 0.243 
 

DE14 0.372 0.322 

DE23 0.221 0.218 
    

Source: Own compilation. Based on IFM-CAP FADN data. 

 

Table 12 shows the distribution of land before and after exit. In almost all NUTS2 regions, we 

observed that the land is more equally distributed after the exit situation. This is due to the 

case that we distribute the freed land according to the empirical exponential distribution. 

 

Table 13 Change in land use due to the exchange of land (Land use after the exit of farms minus land 
use before). 

NUTS2 ARABLE FODDER PERMANENT VEGΕΤABLES 
 

UAA before Change UAA before Change UAA before Change UAA before Change 

DE11 271,458 2.9% 226,327 3.7% 29,926 -53.4% 4,610 -45.6% 

DE12 92,171 1.9% 69,648 -1.5% 2,115 -53.1% 4,126 -63.8% 

DE13 36,687 2.7% 43,586 1.2% 2,069 -69.8% 399 -23.4% 

DE14 181,487 1.5% 269,399 1.5% 12,443 -75.8% 457 -82.5% 

DE21 197,667 -0.8% 269,632 0.3% 367 6.8% 221 5.5% 

DE22 243,756 -0.2% 205,232 -0.2% 37 -100.0% 5,170 -7.5% 

DE23 194,972 -2.2% 196,374 2.2% 
  

87 -45.7% 

DE24 174,647 -3.4% 169,425 3.5% 388 -72.4% 2 10.7% 

DE25 186,007 -0.9% 213,957 2.9% 555 -36.0% 4,980 -93.9% 

DE26 300,073 -2.5% 150,497 5.9% 6,367 -33.0% 291 -4.1% 

DE27 112,147 9.2% 266,636 -3.6% 784 -80.8% 852 -4.3% 

DE40 840,607 0.1% 555,821 -0.4% 1,089 -25.3% 5,715 0.6% 

DE60 
  

1,749 -100.0% 
  

183 -100.0% 

DE71 113,404 -5.0% 65,626 2.6% 408 46.4% 8,388 35.7% 

DE72 80,221 -0.1% 98,091 -1.8% 
  

21 9.7% 

DE73 197,447 -4.7% 153,066 6.1% 237 -100.0% 780 15.7% 

DE80 1,017,129 0.8% 418,856 -2.4% 11 3.5% 426 -82.4% 

DE91 238,464 -0.4% 26,817 -3.8% 
  

241 -19.6% 

DE92 234,350 -1.8% 114,522 2.9% 
  

3,195 -8.4% 

DE93 451,260 -0.3% 553,641 2.1% 10,556 -91.1% 4,452 -12.3% 
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DE94 285,989 -5.0% 460,519 2.4% 2,454 -65.2% 1,028 -63.7% 

DEA1 96,033 -5.5% 106,576 6.5% 857 -96.9% 17,973 -9.6% 

DEA2 117,347 -9.4% 64,323 25.1% 660 -100.0% 6,714 -77.1% 

DEA3 176,839 0.5% 193,463 -0.3% 53 -100.0% 1,687 -37.4% 

DEA4 267,671 -0.9% 110,937 2.5% 188 47.3% 1,070 -58.0% 

DEA5 89,727 4.0% 136,853 -2.7% 
  

224 22.9% 

DEB1 115,031 0.9% 78,854 2.5% 7,830 -41.5% 39 -100.0% 

DEB2 30,073 0.5% 89,364 1.6% 1,659 -99.6% 
  

DEB3 180,060 13.1% 75,433 18.2% 54,462 -70.4% 11,020 8.8% 

DEC0 27,943 -2.4% 38,932 1.5% 4 23.3% 
  

DED2 217,328 1.9% 142,714 -3.6% 1,194 -2.5% 4,522 -19.0% 

DED4 218,220 1.8% 152,167 -2.7% 1,594 -97.2% 145 -41.9% 

DED5 162,727 -3.3% 36,415 7.0% 87 -100.0% 1,019 -100.0% 

DEE0 965,992 -2.0% 328,281 6.0% 530 -62.0% 4,343 6.3% 

DEF0 423,416 -11.9% 490,025 7.2% 733 -100.0% 4,087 -100.0% 

DEG0 560,370 -0.2% 279,927 -0.1% 3,615 -3.4% 1,478 -10.0% 

Source: Own compilation. Based on IFM-CAP FADN data. 

 

Table 13 shows the change in the distribution of arable, fodder, permanent, and horticulture 

land use. Permanent and horticulture land use decreased much more than arable and fodder 

land. The descriptive statistics and estimation models show much higher average exit rates for 

permanent and horticulture farm types. The distribution process of freed land increased the 

land use of the surviving farms. Hence, the surveyed farms do not change their productive 

orientation and do not overtake permanent or horticulture production activities. In reality, 

farms with similar production orientations are more likely to take over freed land from exiting 

farms. First, if this were not the case, there would be incentives to do so as prices might 

increase due to lower supply from exiting farms. Second, farms with similar production have 

lower entry barriers regarding managerial capabilities and other productive requirements 

already in place. 

 

Further, the estimation models are done with German FSS data. The distribution of farms with 

respect to their land use is very different between FSS and FADN farms. The farms selected in 

FADN are truncated with respect to their standard output at the farm level. This means only 

farms over a certain threshold are sampled in FADN. Hence, there is a selection bias at play, 

which makes it likely that the estimated coefficients of the exit model do not exactly fit the 

farms in FADN. It also has to be noted that the variable “age of the farm holder,” which is of 

major importance, could not be used to calculate exit probabilities. The distribution would 

likely be different from what we show here. 
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5.5 Conclusion 

From the estimated exit model from deliverable D4.2, coefficients have been transferred to 

estimate exit probabilities of farms in IFM-CAP. After calculating exit probabilities, the freed 

land has been distributed according to an empirical distribution of observed land use. With 

this, no competition about land took place. It is unknown where the FADN farms are located, 

so they cannot be distributed according to nearby surveying farms from freed land of exiting 

farms. Further, a closer look at the new distribution of productive land use was made. 

Permanent and horticulture production decreased most relative to arable and fodder land 

use. This is mostly explained by the distribution process of freed land from exiting farms and 

due to the selection bias of farms sampled in FADN and observed in the German FSS, from 

which the exit model is estimated. Although many estimated coefficients from the exit model 

could be used to model farm exit in IFM-CAP, the most important and predictive one – the age 

of the farm holder – could not be applied. The results will likely differ according to the 

distribution of age across FADN farms. 

Further research should consider the underlying sample selection of FADN farms compared to 

the farms observed in FSS data. Further, the distribution process of freed land from the exiting 

farms to the surveying farms should be simulated by considering shadow values of land, for 

instance. Additionally, more regionally differentiated exit models could also be estimated for 

their coefficients with respect to farm characteristics. In the applied model, only the average 

exit probability is shifted across NUTS2 regions, but the coefficients for the continuous 

variables are the same for all farms. 
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6 IMPROVED RISK REPRESENTATION 

6.1 Introduction 

The EU’s reduced intervention in agricultural markets, together with the increased variability 

in yields due to climate change, have led to increasingly volatile output prices and more 

income uncertainty. However, for an individual producer, increased output price volatility 

does not necessarily imply changes in the level and variance of income because income also 

depends on input costs, yields, and the correlation between them (Pennings et al., 2010). 

More specifically, a producer faces different kinds of uncertainty: i) production uncertainty 

due to uncontrollable elements such as weather; ii) price uncertainty because the output price 

is unknown at the time decisions must be made; iii) technological uncertainty; and iv) policy 

uncertainty (Moschini and Hennessy, 2001). Depending on the correlation between different 

kinds of uncertainty, the increased price volatility may result in more overall uncertainty for 

producers. The resulting uncertainty in producers’ incomes leads to rising income risk. 

However, the increased risk perceived does not only depend on current activities but is also 

relative to other activities. In selecting potential alternative land uses, it may be of importance 

whether these land uses are substitutes or complements compared with current land-use 

activities. Hence, the likelihood of land-use change depends on the degree to which the 

producer is risk-averse and whether the crops are complements or substitutes. 

 

Climate change and extreme weather events can also increase the intensity and likelihood of 

short‐term variability and shocks to agricultural supply. Food supply shocks due to crop losses 

inside Europe may lead to farmers adjusting their land use or management decisions as well 

as to changes in consumption patterns. Crop losses may become of such a magnitude and 

frequency that farms structurally experience that their costs are larger than their benefits of 

production. In case this happens, several adaptation options may be possible. Extreme 

droughts may eliminate the possibility of rain‐fed agriculture, leading to a shift in crop 

management from rain-fed to irrigated agriculture. It may also be that irrigation is not possible 

due to the available water or not the most profitable option in the specific location. In this 

case, farmers may stop growing the crop at the location and turn to a more profitable crop 

that is more resistant to extreme weather events. If these adaptation options are no longer 

viable, producers may be forced to leave a certain area, leading to farms ceasing to exist and 

land abandonment.  

 

Eventually, these adjustments may lead to significant macroeconomic effects. It is therefore 

important to think conceptually about how to link farmer behaviour from individual 

households, such as modelled using farm models, to market-level models to analyze the 
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implications of changes in behaviour as a consequence of climate or policy changes to macro-

economic market impacts. 

 

In Task 4.4, microeconomic models are developed that analyze producers’ choices. These 

models can inform the behaviour of equilibrium models when faced with uncertain events, 

such as climate-induced production shocks that may lead to farm structural change. The main 

objective of this sub-task is to think conceptually about the use of the output of Task 4.4 for 

including risk behaviour in models such as GLOBIOM. A methodological framework with the 

aim to investigate the impacts of crop-specific insurance on optimal management decisions 

on a farm-household level, considering income and risks in crop production, and subsequently 

upscale this to consider changes in crop area allocation, prices, and trade in Europe is 

developed. The conceptual method, therefore, serves as a proof of concept for future 

research. For IIASA, GLOBIOM has been further adjusted to be run in a non-stationary fashion 

with the aim to assess the impact of extremes such as climate-induced yield shocks on 

producer behaviour and their aggregate effects on, e.g., agricultural markets and land use. 

Using the best available climate data and crop model outputs from estimations by EPIC-IIASA, 

we assess the impacts of future extreme yield. The remainder of this task is organized as 

follows: in subsection 6.2, we develop a method to adapt GLOBIOM to analyze extreme 

events. In subsection 6.3, we provide an overview for including yield shocks in GLOBIOM. In 

subsection 6.4, we go into the need for risk management. In subsection 6.5, we develop an 

approach to incorporate risk in GLOBIOM and the possibility of hedging against insurance. In 

subsection 6.6, we develop a stylized farm household modelling approach to parameterize 

risk premiums in GLOBIOM. We end with a conclusion and discussion section. 

 

6.2  Adapting GLOBIOM for the analysis of extreme events 

GLOBIOM can be enhanced to deal with shocks in prices and yields in a static-comparative 

fashion. To allow for the analysis of these events, a “short run” response to yield shocks is 

implemented by limiting the possible production response to the shock. These limitations to 

the production responses include the restriction of land reallocation per sector for all land use 

sectors to reflect short‐term adjustments and the reduction of possibilities for substitution 

between land and other inputs for crops.  

 

GLOBIOM’s objective function is defined as the sum of global consumer and producer surplus. 

GLOBIOM defines this as the integral under the demand functions minus the sum of all 

production, resource, and trading costs (Havlík et al., 2011). 
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(8) 

 

where MaxOBJ represents the sum of consumers' and producers’ surplus, φdem the constant 

elasticity demand function, d the final demand, φsplw represents the constant elasticity water 

supply function, 𝑊  represents the water use, τproc: is the processing cost by a unit of the 

primary product, 𝑃 the processed quantity, φlucc the land use/cover change cost function with 

rising marginal costs, 𝑄 the amount of land use/cover change, τ land the management cost 

per hectare of land use (except for water), 𝐴  the land use activities, τcalib: the calibrated 

production cost per hectare of land use activities or livestock unit, 𝐵  the livestock numbers, 

φtrade the constant elasticity international trade cost function, 𝑇 the international shipments. 

The indices 𝑟 represent the region, 𝑡 the period, c the country, 𝑔 the spatial grid, 𝑙 the land 

use type, 𝑠  the primary product, 𝑎  the animal type, 𝑦  the final product, and 𝑚  the 

management system. 

 

For a producer, the resulting shadow prices of land derived from solving Eq.(8) represent the 

land's marginal contribution to profit. If a producer has no constraints on land use, profit 

maximization occurs at the point where shadow prices are equal among all alternative land 

uses. However, the equality of shadow prices among land uses only accounts for expected 

output prices because producers do not know output prices at the time they choose their 

production activities and must base their expectations on past experience. This causes 

uncertainty for the producer about the difference between the actual and expected output 

price, which may differ per activity and through time. To accommodate for the differences 

between allocation decisions based on expected prices and the outcomes of these decisions, 

we solve Eq. (8) first by replacing the part of the constant elasticity demand function belonging 

to crop production in Eq. (8) with the expected revenues obtained from crop production: 
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  (9) 

 

where MaxPOBJ represents the producers’ surplus based on expected prices of crop 

production and the consumers' surplus of animal and forest products, 𝑝∗  represents the 

expected price of crop production, and the index 𝑖 represents crop products. 

 

In GLOBIOM, production can be altered along the supply curve in order to meet expected 

demand. In the long run, the supply curve may be altered via, e.g., technological change and 

farm structural change, and the demand curve can be altered through, e.g., GDP and 

population changes, leading to a new equilibrium price. For inter-annual changes, however, 

producers cannot change the production quantities of a certain crop anymore, and the 

adaptive capacity of changing production quantities must come from consumption or trade 

instead of altering land allocation or changing management styles. 

 

We first solve MaxPOBJ as depicted in Eq. (9), where producers maximize their expected 

revenues based on expected prices of crop production. Upon solving Eq. (9), we fix the 

allocation of Ar,t,c,g,l,i,m. After the producer’s land allocation and management decision based 

on expected prices has taken place, production has an upper bound: it is defined as the goods 

harvested based on the land allocation and the outcome of the yields. With the fixed 

allocation, we solve MaxOBJ in Eq. (8). This two-step system implies that within an agricultural 

season, an unanticipated change in yields will lead to a change in the supply of products, which 

will lead to a change in the corresponding prices and demand of the product. Only in the next 

period will a change in resource costs allow producers to shift the supply and reconsider their 

crop allocation decisions. 
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6.3 Climate impact estimation 

Climate change has the potential to affect the agriculture, forestry, and fisheries sectors, both 

negatively (e.g., from more extreme storms, lower rainfall, increasing variability, extreme 

heat) and positively (e.g., from CO2 fertilization, extended seasons). These effects will arise 

from gradual climate change and extreme events that will affect production, but also from 

indirect effects, e.g., changes in the prevalence of pests and diseases. To identify events in the 

future that influence producers’ risk attitude, impacts of gradual climate change are extreme 

weather events are selected under future climate conditions.  

 

The impacts of gradual climate change and extreme events on yields come from the EPIC-

IIASA. Regarding gradual climate change impacts, annual EPIC-IIASA output is converted to the 

decadal GLOBIOM resolution by using 30-year moving average values – i.e., 15 years before 

and 15 years after - over the time horizon of the model (Eq. (10). The historical (base) yields 

(𝑌𝑐,𝑏𝑎𝑠𝑒) are calibrated using the FAO yields for 2000, while the gradual climatic effects of the 

year 2050 (𝜆2050
𝑐 ) are calculated by taking the average effect between 2035-2065.  

 

 𝜆𝑐,𝑇,𝑖,𝑅𝐶𝑃
𝑐𝑐 =

1

𝑌𝑐,𝑏𝑎𝑠𝑒,𝑖,𝑅𝐶𝑃
∑

𝑌𝑐,𝑡,𝑖,𝑅𝐶𝑃
30

𝑇+15

𝑡=𝑇−15

= 
�̅�𝑐,𝑇,𝑖,𝑅𝐶𝑃
𝑌𝑐,𝑏𝑎𝑠𝑒,𝑖,𝑅𝐶𝑃

 (10) 

 

where 𝜆 
𝑐𝑐 is the climatic impact on crop yields at each decadal timestep (𝑇) for each grid cell 

(𝑖) under each degree of warming (RCP). 𝑌𝑐,𝑏𝑎𝑠𝑒 is the base year crop yield. 

 

To analyze the impacts of the extreme weather event, a supplementary factor (λ 
var), which 

reflects the extreme event modelled by the hybrid model, is added to Eq. (10) after the 

producer has made their decisions based on gradual climate change impacts. The value of this 

supplementary factor is selected as the largest production loss given GLOBIOM’s baseline 

2050 area allocation and the yield deviations predicted by the hybrid model (pX) in the 30-

year time window, here, 2035-2065. 

 

 𝑌𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃,,𝑝𝑋
𝑝

= 𝑌𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑏𝑎𝑠𝑒,𝑖  × 𝜆𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃
𝑐𝑐 × 𝜆𝑇,𝑖

𝑠𝑒  ×  𝜆𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃,𝑝𝑋
𝑣𝑎𝑟   (11) 

 𝜆𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃,𝑝𝑋
𝑣𝑎𝑟 =

𝑌𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃,𝑝𝑋
1
30
∑ 𝑌𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑡,𝑖,𝑅𝐶𝑃
𝑇+15
𝑇−15

= 
𝑌𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃,𝑝𝑋

�̅�𝑠𝑜𝑦𝑏𝑒𝑎𝑛,𝑇,𝑖,𝑅𝐶𝑃
 (12) 

 

In GLOBIOM, the combined impacts of extreme weather event-related yield losses and gradual 

climate change are implemented as factor changes and multiplied with the baseline yields. 
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For the major crops grown in Europe (rapeseed, rye, rice, soybeans, sugar beet, sunflower, 

corn, potato, winter wheat, and barley), EPIC-IIASA model outputs based on Euro‐Cordex 

climate data were produced for the GCM‐RCP climate scenarios. All runs consider simulations 

with explicit accounting for CO2 fertilization. For each of the 30‐year time slices, we compare 

the difference between the annual yield and the mean yield level of that time slice. For an 

aggregation of impacts of the shocks across individual crops, the yields are computed as 

weighted averages of all crops weighted by their area.  

 

 
Figure 36 EPIC IIASA model outputs. 

 

Both the climate‐induced yield impact of gradual change as well as the yield impact induced 

by weather variability can be implemented in GLOBIOM.  

 

6.4 The need for risk management 

Producers are generally considered risk averse, meaning they will give up some level of 

expected income to reduce the possibility of a negative outcome (Arrow, 1996a). The most 

common way for them to do so is by altering their production plan. This is why, upon analyzing 

land allocation decisions, producers’ preferences have often been characterized using an 
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expected utility function (J.-P. Chavas and Pope, 1985; Coyle, 1999; Lansink, 2008; Sckokai and 

Moro, 2006). Although there has been quite some critique on the approach of an expected 

utility function (see, e.g., Buschena and Zilberman, 1994), it is still one of the leading 

frameworks to describe producers’ economic choices. 

 

The increased instability of agricultural incomes strengthens the need for risk management. 

Risk management is used to control the possible adverse consequences of uncertainty that 

may arise from production decisions. A producer may adopt several measures to decrease 

rising income risk, such as crop diversification and forward and future contracts. Government 

policies are also aimed at reducing production risk. Government intervention is necessary to 

shift risk away from producers due to failures in the ideal competitive market for risk-shifting 

(Arrow, 1996b). This is especially the case for catastrophic events, such as floods and droughts, 

which are characterized by systemic risk, meaning that there is a large geographical 

correlation between farms  (Glauber, 2004; Meuwissen et al., 2003; Miranda and Glauber, 

1997). 

 

A well-known measure supported by governments to assist in risk management is the 

possibility for farmers to insure (part of the) farm operations. These may protect against the 

risk of losing (part of the) income due to catastrophic events (such as livestock diseases) or 

common fluctuations (such as whole-farm insurance). Programs reducing income variability 

entail both a wealth and an insurance effect that may lead to different land allocation 

decisions (Adams et al., 2001; J.-P. Chavas and Holt, 1996; Hennessy, 1998). The recent spikes 

in agricultural prices caused an increased appeal for financial safety nets among member 

states.  

6.5 Inclusion of risk and insurance in GLOBIOM 

In this section, we discuss the implementation of risk aversion and the possibility of adopting 

insurance in GLOBIOM. GLOBIOM’s objective function is defined as the sum of global 

consumer and producer surplus. Prices and trade are endogenous to the model and adjust 

based on changes in demand (exogenously driven by population and GDP constraints) and 

supply. Because of the deterministic nature of the model, in combination with the equilibrium 

structure where the optimum between supply and demand is sought without explicitly 

representing agents, the influence of risk in area allocation would naturally enter the model 

through a change in the cost or a change in the revenues. This added cost component that 

acts on the consumer surplus would have to be parameterized through a more farm-level 

decision-making model that could quantify the risk in terms of costs. This cost component 

would enter GLOBIOM directly in the objective function and be specific to the agricultural 

activity employed. 
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GLOBIOM’s objective function is defined as the integral under the demand functions minus 

the sum of all production, resource, and trading costs, as shown in Eq. (13). The uncertainty 

for the producer about the difference between the actual and expected output prices may 

cause them to prefer a situation where they give up part of their revenue to get a certain 

income. To accommodate for the differences between allocation decisions based on preferred 

revenues (i.e., expected revenues including a cost component to quantify risk aversion) and 

the outcomes of these decisions, we solve Eq. (8) first by replacing the part of the constant 

elasticity demand function belonging to crop production in Eq. (8) by the expected revenues 

based on risk preferences related to crop production: 

 

 

MaxOBJt =∑⌈∫𝜑𝑟,𝑡,𝑦
𝑑𝑒𝑚(𝐷𝑟,𝑡,𝑦)𝑑(. )⌉

𝑟,𝑦

∑ (𝑝𝑟,𝑡,𝑖
∗ ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑖,𝑚 − 𝐶𝑟,𝑐,𝑙,𝑠)

𝑟,𝑐,𝑔,𝑙,𝑖,𝑚

−∑[∫𝜑𝑟,𝑡
𝑠𝑝𝑙𝑤(𝑊𝑟,𝑡)𝑑(. )]

𝑟

−∑(𝜏𝑟,𝑚
𝑝𝑟𝑜𝑐 ∙ 𝑃𝑟,𝑡,𝑚)

𝑟,𝑚

− ∑ [∫𝜑𝑟,𝑙,𝑙∗,𝑡
𝑙𝑢𝑐𝑐 (∑𝑄𝑟,𝑡,𝑐,𝑔,𝑙,𝑙∗

𝑐,𝑔

)𝑑(. )]

𝑟,𝑙,𝑙∗

− ∑ (𝜏𝑐,𝑔,𝑙,𝑠,𝑚
𝑙𝑎𝑛𝑑 ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑠,𝑚)

𝑟,𝑐,𝑔,𝑙,𝑠,𝑚

− ∑ (𝜏𝑐,𝑔,𝑙,𝑠,𝑚
𝑐𝑎𝑙𝑖𝑏 ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑠,𝑚)

𝑟,𝑐,𝑔,𝑙,𝑠,𝑚

− ∑ (𝜏𝑐,𝑔,𝑎,𝑚
𝑐𝑎𝑙𝑖𝑏 ∙ 𝐵𝑟,𝑡,𝑐,𝑔,𝑎,𝑚)

𝑟,𝑐,𝑔,𝑎,𝑚

− ∑ [∫𝜑𝑟,𝑟∗,𝑡,𝑦
𝑡𝑟𝑎𝑑𝑒 (𝑇𝑟,𝑟∗,𝑡,𝑦)𝑑(. )]

𝑟,𝑟∗,𝑦

−∑(𝛽𝑐
𝑝∗ ∙ 𝑆𝑐

𝑝∗)

𝑟,𝑦

+∑(𝛽𝑐,𝑟,𝑦
𝑑∗ ∙ 𝑆𝑐,𝑟,𝑦

𝑑∗ )

𝑟

 

(13) 

 

where MaxPOBJ represents the producers’ surplus based on expected revenues, including risk 

preference of crop production and the consumers' surplus of animal and forest products, p* * 

A - C represents the expected revenue of crop production minus risk aversion coefficient C, 

and the index 𝑖 represents crop products. 

 

𝑆𝑐,𝑟,𝑦

=

{
 
 

 
 𝑎𝑛𝑑1 if ∑𝑝𝑟,𝑡,𝑖

∗ ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑖,𝑚 − 𝐶𝑟,𝑐,𝑙,𝑠

𝐶

𝑐=1

< 𝑆𝑐,𝑟,𝑦
∗     (insurance adoption)

𝑎𝑛𝑑0 if ∑𝑝𝑟,𝑡,𝑖
∗ ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑖,𝑚 − 𝐶𝑟,𝑐,𝑙,𝑠

𝐶

𝑐=1

≥ 𝑆𝑐,𝑟,𝑦
∗    (no insurance adoption)

 
(14) 
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where 𝑠∗ represents the revenue obtained from potential payout – premium. If this is higher 

than the expected revenue minus the cost of the risk aversion coefficient, then there is 

adoption of the insurance. If this is lower than the expected revenue minus the cost of the risk 

aversion coefficient, then there is no adoption of the insurance. The cost of the risk aversion 

coefficient is defined by agricultural product and would come either from FarmDyn or are 

determined as described further below. 

 

After the producer’s land allocation and management decision based on expected revenues, 

including risk preference and the possibility for insurance, has taken place, production has an 

upper bound: it is defined as the goods harvested based on the land allocation and the 

outcome of the yields. With the fixed allocation, we solve MaxOBJ in Eq. (8), with the 

indemnity and payout of adopted insurance now directly included: 

 

 

MaxOBJt =∑⌈∫𝜑𝑟,𝑡,𝑦
𝑑𝑒𝑚(𝐷𝑟,𝑡,𝑦)𝑑(. )⌉ −∑[∫𝜑𝑟,𝑡

𝑠𝑝𝑙𝑤(𝑊𝑟,𝑡)𝑑(. )]

𝑟𝑟,𝑦

−∑(𝜏𝑟,𝑚
𝑝𝑟𝑜𝑐 ∙ 𝑃𝑟,𝑡,𝑚)

𝑟,𝑚

− ∑ [∫𝜑𝑟,𝑙,𝑙∗,𝑡
𝑙𝑢𝑐𝑐 (∑𝑄𝑟,𝑡,𝑐,𝑔,𝑙,𝑙∗

𝑐,𝑔

)𝑑(. )]

𝑟,𝑙,𝑙∗

− ∑ (𝜏𝑐,𝑔,𝑙,𝑠,𝑚
𝑙𝑎𝑛𝑑 ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑠,𝑚)

𝑟,𝑐,𝑔,𝑙,𝑠,𝑚

− ∑ (𝜏𝑐,𝑔,𝑙,𝑠,𝑚
𝑐𝑎𝑙𝑖𝑏 ∙ 𝐴𝑟,𝑡,𝑐,𝑔,𝑙,𝑠,𝑚)

𝑟,𝑐,𝑔,𝑙,𝑠,𝑚

− ∑ (𝜏𝑐,𝑔,𝑎,𝑚
𝑐𝑎𝑙𝑖𝑏 ∙ 𝐵𝑟,𝑡,𝑐,𝑔,𝑎,𝑚)

𝑟,𝑐,𝑔,𝑎,𝑚

− ∑ [∫𝜑𝑟,𝑟∗,𝑡,𝑦
𝑡𝑟𝑎𝑑𝑒 (𝑇𝑟,𝑟∗,𝑡,𝑦)𝑑(. )]

𝑟,𝑟∗,𝑦

−∑(𝛽𝑐
𝑝∗ ∙ 𝑆𝑐

𝑝∗)

𝑟,𝑦

+∑(𝛽𝑐,𝑟,𝑦
𝑑∗ ∙ 𝑆𝑐,𝑟,𝑦

𝑑∗ )

𝑟

 

(15) 

 

Where MaxOBJt represents the sum of consumers’ and producers’ surplus, Sp*
c the 

indemnities paid in case insurance is chosen, Sd*
r,c,y the payout in case insurance is chosen and 

revenues drop below threshold X. 𝛽𝑟,𝑦
𝑝∗  and 𝛽𝑟,𝑦

𝑑∗  represent the cost for indemnities and the 

payouts, respectively. 
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6.6 Farm household level model to calibrate parameters for GLOBIOM 

To assess the impact of increased yield volatility on farmers' production decisions, maximizing 

expected revenues minus risk aversion, we need to estimate the crop-specific risk aversion 

coefficient to be implemented as a cost component in market-level models such as GLOBIOM. 

To approximate this cost component, we can either use existing farm-level models such as 

FarmDyn or establish stylized farm household models. An example of such a stylized farm 

household model is given below. 

 

We assume producers maximize income while accounting for risk in their production 

decisions. Representative arable farmers with fixed amounts of land and facing exogenous 

input and output prices aim to maximize expected utility from total revenues by allocating 

land to various crops. Currently, producers receive a direct payment per hectare that varies 

by crop based on historic entitlements. However, a flat-rate payment was introduced with the 

2015 crop year; it provides the same payment regardless of the crops planted by the producer 

and is referred to as the single farm payment (SFP).  

 

To analyze the crop allocation decision, we develop the following model: 

 

 Maximize U =  –½ φ σ2 (16) 

Subject to:  

 Rk,t = [pk,t yk,t – ck(w)+SPSk] xk, k (17) 

  (18) 

 k,i (19) 

 k

 

(20) 

 
 

(21) 

 

U represents the producer’s utility; ∑E[Rk] is the expected total revenue minus variable costs 

from crop production; is the risk aversion coefficient that takes the form , where I 
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refers to the farm household’s income;19 σ2 is the variance associated with the total crop 

portfolio; pk,t and yk,t represent the respective output price and yield for crop k in period t; 

ck(w) is the per unit-area variable cost of producing crop k as a function of exogenously-

determined input prices w; and SPS is the flat-rate payment based on historic entitlements 

(€/ha). Further, CV(Rk,Ri) refers to the covariance matrix, where Ri and Rk are the respective 

realized gross margin to crops i and k, and E[Rk] is the farmer’s expected gross margin (€/ha) 

from planting crop k; xk denotes the number of hectares allocated to produce crop k; and  

represents the total area (ha) the farmer has available to allocate to crops. There are K crops 

that can be planted in any given period, and there are T periods.  

 

Equation (17) calculates the farmer’s gross margin accruing to each crop in each period given 

the allocation of land to crops, which is endogenously chosen in the model. SPS is included in 

Eq. (17), but the fixed production cost is not because fixed costs are part of the PMP term (as 

explained next). Equation (18) specifies the risk associated with the total crop portfolio, while 

Eq. (19) provides the variance-covariance matrix. Equation (20) calculates the expected gross 

margin that accrues to each crop over all periods (simulations). Finally, the constraint in Eq. 

(21) indicates that the farmer’s cultivated area does not exceed the available area. In each 

period, the producer must decide how to allocate her  hectares among the K different crops 

so as to maximize utility over the total set of crops. 

6.7 Discussion and conclusion 

The main objective of this section is to think conceptually about the use of microeconomic 

models to inform dealing with risk and uncertainty in producer’s behaviour in market-level 

models. Macro-level models currently have limited capabilities to consider changes in the 

volatility of commodity prices. Therefore, this task develops a methodology to add risk premia 

to commodity prices reflecting commodity-specific and country-specific farmer risk aversion. 

A methodological framework with the aim to investigate the impacts of crop-specific 

insurance on optimal management decisions, considering income and risks in crop production, 

and subsequently upscale this to consider changes in crop area allocation, prices, and trade in 

Europe is developed. We show how market-level models such as GLOBIOM can be adapted to 

deal with increased yield volatility as a consequence of climate change; how crop models such 

as EPIC-IIASA can be used to assess the impacts of future crop yield volatility; how risk in 

agricultural decision-making can be included in market-level models, and how this risk can be 

estimated using stylized farm household modelling. Together, this serves as a proof of concept 

for future research. 

 

 

 

X
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There is still debate about how the risk, as estimated by farm household models such as 

FarmDyn, can best be transferred to market-level models. Task 4.4 developed the curvature 

of the value function on risk preference and statistically determined the risk preference of 

farmers. However, it has not been possible to translate the outputs of task 4.4 to a risk 

premium that can be incorporated into GLOBIOM. Generating changes in risk premiums in a 

farm(household) model with risk preferences is not straightforward. The changes in the risk 

premiums are in the dual domain (a kind of “shadow price” change), while we observe changes 

in the cropping pattern in the simulations. To estimate the risk parameters, information on 

the variability of the prices and yields can be obtained from EPIC-IIASA, as well as costing from 

FADN. A second issue exists around translating a farm-specific risk premium to a per-crop and 

per-hectare risk premium. Further research could analyze whether an econometric approach 

could be better suited. Using a revealed preferences approach, one could econometrically 

estimate country average risk aversion coefficients based on FADN data and explore 

possibilities to integrate these into GLOBIOM to assess impacts on production, consumption, 

trade, and agricultural markets. 
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7 IMPROVED REPRESENTATION/ ADOPTION OF 
MITIGATION TECHNOLOGIES 

7.1  Introduction 

The European Green Deal foresees achieving climate neutrality by 2050 and sets the objective 

via the European Climate Law of reducing greenhouse gas (GHG) emissions by at least 55% 

until 2030. In this context, the agricultural sector is covered by the EU’s Effort Sharing Decision 

(ESD) and Effort Sharing Regulation (ESR) together with the sectors of transport, buildings, and 

waste. Jointly, they aim to reduce GHG emissions by 30% until 2030 compared to the base 

year 2005. Given that GHG emissions from the agricultural sector declined by only 2% from 

2005 to 2020 (EEA, 2022), more strenuous endeavours to reduce GHG emissions are necessary 

to achieve the given targets.  

 

Given the urgency of this topic, policy assessments in the domain of climate change mitigation 

are one of the most frequent applications of current economic models by the European 

Commission (EC) and an ongoing research topic of high relevance in micro- and macro-

economic models covering the agricultural sector (Barreiro-Hurle et al., 2021; Frank et al., 

2021; Huber et al., 2023; Kokemohr et al., 2022; van Meijl et al., 2006). The application of 

models on multiple scales is key, as different types of questions require different modelling 

approaches. Micro-models, such as single-farm level models, can be used to assess the impact 

of specific mitigation measures while accounting for farm heterogeneity and interaction 

effects between measures and other farm activities (Huber et al., 2023b; Lengers et al., 2014). 

This allows us to identify the most promising GHG mitigation measures and construct marginal 

abatement cost curves (MACCs), which are critical tools to provide policymakers and macro-

models with information on the cost-effectiveness of mitigation measures. In contrast, macro-

models, such as partial equilibrium models (PE) and computable general equilibrium models 

(CGE), lack the detail provided by micro-models due to their more aggregated character. 

However, they give the advantage of factoring in market feedback, land-use change, structural 

changes in the agricultural sector, and linkages across sectors through factor markets and 

substitution effects (Frank et al., 2019). Considering these model characteristics, macro 

models allow us to find the most cost-efficient mitigation potential for the agricultural sector 

for specific regions and on a global level. 

 

A challenge in macro-models is often to develop a consistent and regional-specific database 

for abatement costs of mitigation measures, as the availability of cost estimates is scarce and 

often based on expert opinion for a specific country, region, or production system (US EPA, 

2013). To complete the database for mitigation measures on a global or even regional level, 

assumptions have to be made to extrapolate the values to other countries and production 
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systems. This can also lead to the omission of various mitigation measures as no reliable 

information is available. Moreover, these databases typically lack information regarding the 

adoption rate of mitigation measures by farmers. This absence of data in the construction of 

MACCs leads to overestimating the mitigation potential in their application within macro-

models. Here, single farm-level models, such as FarmDyn, can produce country and farm-type 

specific data for mitigation measures due to their ability to simulate the enforced use of 

mitigation measures and the endogenous decision to adopt a mitigation measure under 

specific policy constraints, such as a carbon tax. However, this model feature also depends on 

the availability of farm-level data.  

 

This sub-task addresses these shortcomings of the representation of mitigation measures in 

macro-models based on previous work in Task 3.3 on farmers’ adoption behaviour of 

mitigation measures and through the linkage of the single farm level model FarmDyn with the 

macro models GLOBIOM and MAGNET from the MINDSTEP model toolbox. Specifically, we 

aim to demonstrate conceptually, using the case of dairy farms, the following potential 

advantages of the model linkages: 

  

• We want to show how the single-farm level model FarmDyn can be used to extend the 

available mitigation measures in the macro-models by adding and parameterizing 

novel mitigation measures in GLOBIOM and through integrating the new measures in 

the MACCs used by MAGNET. The chosen mitigation measures align with the findings 

of adoption behaviour in Task 3.3. 

• In the linkage to MAGNET, we want to apply the mitigation measures to all EU member 

states using single farm-level data from the FADN database to highlight the impact of 

country specifics expressed in farm heterogeneity.  

• In the linkage with GLOBIOM, the objective is to illustrate the influence of country-

specific environmental accounting schemes and the intensity level of the farm on the 

abatement potential and costs. 

 

The subtask is structured as follows. First, we introduce the conceptual framework of the 

model linkage between FarmDyn and the two macro-models GLOBIOM and MAGNET. Second, 

we introduce each model with respect to model descriptions, their current representation of 

mitigation measures, and their technical implementation in the models. Third, we introduce 

the farm-level data used for each specific model linkage. Eventually, we present the modelling 

results for (1) FarmDyn representing the input data for the macro-models, (2) GLOBIOM with 

respect to the used values for the mitigation measures as well as the impact on their MACC 

curves in the simulation, (3) MAGNET with respect to the MACC curves and their impact on 
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total emissions and other key variables. Lastly, the results are discussed and put into 

perspective in the concluding remarks. 

7.2  Conceptual framework of model linkage 

This section introduces the conceptual framework and model linkages of the micro-model 

FarmDyn and the two macro-models GLOBIOM and MAGNET. It covers the data preparation 

and implementation step for FarmDyn, the model simulation setup of Farmdyn, and the 

description of the interface between the models, explicitly covering the input/output and data 

conversion step. The workflow of the model linkages follows the structure presented in Figure 

37.  
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Figure 37 Workflow and model linkage. 

7.2.1 Modelling setup and data preparation step 

To construct both the marginal abatement cost curves for MAGNET and parameterize the 

novel mitigation measures, called add-on technologies, in GLOBIOM, the new mitigation 

measures had to be implemented in FarmDyn. The choice of mitigation measures is based on 

previous work of Task 3.3 on farmers’ adoption behaviour and encompasses the use of feed 

additives, feed concentrates, and herd management.  
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In addition, FarmDyn requires constructing a farm sample file that contains all relevant 

information on the different dairy farms used in each of the exercises based on the farm-level 

statistics described in section 7.4. As our work in this exercise is a proof of concept, we apply 

two different farm samples for GLOBIOM and MAGNET with two different foci to explore the 

linkage potential based on their distinct model features.  

 

GLOBIOM differentiates in their bovine livestock system between extensive and intensive 

farms based on the grassland share of the production system. To match the extensive and 

intensive livestock system, we use two typical German and Dutch farms characterized as 

extensive and intensive dairy farms. Thus, we can leverage the versatility of FarmDyn to model 

specific farm types with different intensity levels and to show the impact of the livestock 

system-specific add-on technologies. 

 

MAGNET has a raw milk sector equivalent to the dairy farm type in FarmDyn. However, it does 

not differentiate between intensities. In the linkage to MAGNET, we want to showcase the 

ability of Farmdyn to provide data for marginal abatement cost curves, taking farm 

heterogeneity between country-specific average farms into account. Even though the 

underlying parameterization of FarmDyn for technology coefficients and cost structures is 

based on the German default version, we can show how country-specific typical farm 

endowments affect the construction of country-specific MAC curves. 

7.2.2 FarmDyn simulation setup 

The two macro-models, GLOBIOM and MAGNET, have two inherently different 

implementations of mitigation measures, namely add-on technologies and technology-based 

marginal abatement cost curves. Based on their implicit and explicit characteristics, the 

simulation setup for FarmDyn has, on the one hand, to produce parameters that can be used 

to transfer to a specific add-on technology, and on the other hand, it must provide data for a 

marginal abatement cost curve given different levels of a carbon tax. Practically, this implies 

that for GLOBIOM, we run for each of the implemented mitigation measures and country-

specific intensive and extensive farm types one instance where the mitigation measure is 

exogenously enforced. The results are then used in the subsequent data processing step to 

populate the new add-on technologies in GLOBIOM. Given that the farm sample is different 

for MAGNET, we run for each EU country the average farm in Farmdyn with an enforced feed 

additive and endogenous mitigation measures (see section 7.3.1 for an explanation of 

endogenous measures) with three different carbon tax levels. The first tax level is zero, giving 

us the baseline. The second tax level is 65 euros per CO2-eq., covering the cost of the enforced 

mitigation measures. The third one is 130 euros per CO2-eq., which triggers additional 

endogenous mitigation measures such as extended lactation or changes in the feeding regime.  
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7.2.3 Micro – Macro model interface 

The interfaces between the micro-model FarmDyn and the macro-models MAGNET and 

GLOBIOM describe the input/output relationship in the data processing. In the interface to 

GLOBIOM, FarmDyn provides data on the farm level, which is country-specific (Dutch or 

German) and technology-specific, i.e., the exogenous mitigation measures. The data includes 

information on global warming potential (GWP) differentiated by source, profits, and livestock 

unit of cows and heifers. The data is converted to the parameter structure of the add-on 

technology by calculating the relative emission changes for each mitigation technology 

considering the emission source. These relative changes are applied to the GLOBIOM 

management dataset to calculate the absolute emission reduction levels. The costs are 

calculated using the difference in profit between the farm outcome with and without the 

technology. FarmDyn provides MAGNET data for each EU member state based on an average 

dairy farm for each EU-28 country. The data includes the different carbon tax levels and the 

corresponding total GWP emissions, which can be used to construct the technology-based 

marginal abatement costs. 

7.2.4 Macro-model simulation and results 

The impact of novel mitigation measures in the portfolio of add-on technologies in GLOBIOM 

and the implementation in MAGNET’s MACCs are presented in the result section. 

For GLOBIOM, we use the SSP2 with nine GHG price trajectories for 2030 to show MACCs as a 

simulation result with and without the new technologies, considering the results from the 

German dairy farms and those of the Dutch dairy farms, respectively. Further, it is highlighted 

which mitigation measures impact various abatement sectors, such as technical, structural, 

and activity-based options. In addition, regionalized EU results with emission reductions are 

presented. MAGNET uses the same SSP2 economic and yield growth trajectory for 2040, but 

results are given only for a carbon tax of 50 €/tCO2eq for EU-28 and globally. The presented 

results assess the production, import, export, prices, as well as emission levels of the raw milk 

sector. 

7.3  Model descriptions 

In this section, we describe the micro-model FarmDyn and the macro-models GLOBIOM and 

MAGNET from the MIND STEP model toolbox, emphasizing the different implementations of 

the GHG mitigation technologies. The first section briefly introduces FarmDyn and presents 

the most relevant model features. This includes the GHG emission accounting for Germany 

and the Netherlands, the explicit mitigation technologies, and a description of mitigation 

strategies on-farm based on changes in farm management. Second, the partial equilibrium 

model GLOBIOM is presented, highlighting the most important features with respect to 

mitigation technologies and the relevant parameters which are extended by FarmDyn. Third, 
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we introduce the computable general equilibrium model MAGNET, focusing on the most 

relevant sectors and the implemented marginal abatement cost curves (MACCs). 

7.3.1 FarmDyn 

FarmDyn is a highly detailed bio-economic farm scale optimization model based on mixed-

integer programming. It simulates farmers’ decisions on farm management, agricultural 

production, and investments in a comparative setting. The model contains detailed 

information on bio-physical and economic processes linked to farming activities. This bio-

economic model setup allows us to determine the trade-offs between economic and 

environmental indicators considering the production of both agricultural outputs and 

environmental externalities (Janssen and van Ittersum, 2007).  

 

FarmDyn has multiple country-specific adjustments20. In this exercise, we use the German and 

Dutch versions that differ in input data and model equations to capture different cost 

structures, technology coefficients, agronomic characteristics, and statuary provisions. This 

includes country-specific environmental accounting calculations based on national guidelines. 

In the context of non-CO2 emissions, this impacts the choice of the methodology based on 

different tier levels (Penman et al., 2006), divergent manure excretion levels per cow and their 

detail, and different feeding options with more detail in the Dutch version.  

 

7.3.1.1 Exogenous and endogenous non-CO2 mitigation measures 

Farmdyn distinguishes between exogenous and endogenous non-CO2 mitigation measures. 

Endogenous mitigation measures describe on-farm management adaptations as a response 

to an external shock, such as a carbon price policy or an emission ceiling scenario. Exogenous 

mitigation measures are activated by the FarmDyn user and assess one mitigation measure at 

a time or multiple enforced mitigation measures simultaneously. In the MIND STEP 

Deliverable 3.3, an extensive literature review on mitigation measures was done to assess the 

most suitable candidates to be added to the already existing portfolio of mitigation measures 

within FarmDyn. The mitigation options chosen in that process were based on the survey of 

Dutch dairy farmers, looking not only at economic but also behavioural aspects (Task 3.3) and 

their potential impact with respect to total mitigation and associated costs in the linkage to 

the macro-models. Further, not all mitigation measures for the agricultural sector found in the 

literature research are implementable in FarmDyn due to its features as a supply-side farm-

 

20 For more extensive information on the parameterization of Farmdyn and its model structure, you 
can refer to its documentation: https://farmdyn.github.io/documentation/  

https://farmdyn.github.io/documentation/
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level model. In the following section, we will describe the chosen exogenous and endogenous 

measures in FarmDyn in more detail. 

7.3.1.2 Exogenous measures in FarmDyn 

This section introduces the exogenous measures in FarmDyn covering feed additives, herd 

management options, and concentrates differentiated by their methane-producing potential. 

FarmDyn differentiates two possible feed additives, namely vegetable oil and Bovaer®. Both 

feed additives are mutually exclusive as no data is available for their combined use. Activating 

one of the feed additives forces it into the feeding ration while reducing the methane emission 

stemming from the enteric fermentation. Depending on the feed additive, it requires either 

6% of the total DM intake for vegetable oil or 0.06% of the DM intake in the case of Bovaer®. 

The associated reduction of methane from enteric fermentation is 20% (vegetable oil) and 

30% (Bovaer®), respectively. The prices for the feed additives are taken from literature for 

standard feed oil and information from experts in the case of Bovaer®21.  

 

The next mitigation option is available as an exogenous and endogenous measure depending 

on the model setup, namely the extension of the lactation period of dairy cows. By extending 

the lactation period, less young stock is required on the farm to replace the herd, reducing the 

number of animals and hence the associated emissions. In general, this measure is 

controversial as it is contrary to the general long-term breeding goal of many farms. The 

current length of the average lactation period of a herd is predominantly determined by the 

objective to increase one of the selected traits, e.g., milk yield, fat, and or protein content, 

which translates into a high turnover of cows in the herd (De Vries, 2017). Extending the 

lactation period of cows reduces the turnover within the herd and could slow down the 

increase in, e.g., the average milk yield of the herd. In a comparative setting, i.e., a myopic 

one-year view in our case, the extension would result in an immediate cost reduction due to 

lower fodder cost for the sold young stock linked to the emission reduction, resulting in a win-

win situation. Whereas in a long-term view, the average milk yield could decrease, the 

emission per milk yield could be lower. Despite its limitations, we see this option as a valid 

mitigation measure to be assessed in this task and implemented by extending the average 

lactation period of a cow by 1.5 years in the German version and 0.5 in the Dutch version and 

adding an extra cost of 40 Euro per cow.  

 

The last mitigation measure, the use of emission-reduced concentrate feed, is also available 

as an endogenous and exogenous option; however, only in the Dutch version. Due to its feed 

emission accounting methodology based on Tier 3, the Dutch version provides the option to 

feed concentrate, which has a lower enteric fermentation methane emission factor than 

 

21Confidential expert knowledge - Interview by Pieter Willem Blokeland (WEcR).  
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conventional feed. The potential methane emission reduction is 5% and 10% depending on 

the concentrates used, and the costs of the concentrate are based on S̆ebek et al. (2016). 

Table 14 gives an overview of the used exogenous mitigation measures. 

Table 14 Mitigation measures implemented in FarmDyn 

Mitigation 
measure 

Mean of mitigation and assumed 
emission reduction 

Assumed costs References 

Feed additive – 
Vegetable oil 

(DE, NL) 

Vegetable oil (e.g., linseed oil) 
reduces the methane emission from 
the enteric fermentation step by 
20% 

The associated costs are based 
on the quantity given to the 
cows and the cost per unit of 
linseed oil. Further, the impact 
on the feeding regime is 
expected as the oil contains a 
lot of NEL without other 
macronutrients. The required 
feed ration based on the dry 
matter intake is 0.6%. The price 
is set to 500 Euro/ton. 

(Doreau et al., 
2018; Vargas 
et al., 2020) 

Feed additive – 
Bovaer 

(DE, NL) 

Bovaer reduces in the enteric 
fermentation step the emitted 
methane emission by 20% 

The assumed costs are solely 
based on the quantity given to 
the dairy cows and the cost per 
unit of Bovaer. The quantity 
given to the cow accounts for 
0.06% of the dry matter intake. 
The price of Bovaer is ca. 50 
Euro per cow. 

(van Gastelen 
et al., 2022), 

DSM (2022)22 

Increased 
number of 
lactations – Cow 
longevity 

(DE, NL) 

Decreases the number of 
replacements/heifers on the farm, 
thereby reducing their associated 
emissions. There is no precise 
emission level per remonte as it is 
determined by the feeding and 
other farm parameters. Hence, the 
emission reduction differs between 
farms.   

To improve/maintain the 
health of cows (e.g., mastitis 
issues), the variable costs are 
increased by 40 Euros per cow 
to cover veterinary costs. At 
the same time, there are no 
further costs for feeding the 
sold young stock, reducing the 
variable costs for feeding, 
which can result in negative 
variable costs for the farm. 

(Dallago et al., 
2021; Grandl 
et al., 2019) 

Methane-
reducing 
concentrate (NL) 

Concentrates with a lower methane 
emission factor from enteric 
fermentation compared to 
conventional concentrates reduce 
methane emissions. The low-
emission concentrates differ in 
composition compared to the 
conventional concentrates.  

Additional costs are relative to 
the conventional concentrates 
and range from 0.3-3.8% for 
the concentrates with a 5% 
methane reduction and 3.6-
11.9% for the concentrates 
with a 10% methane reduction.   

(S̆ebek et al., 
2016) 

 

22 Based on expert knowledge: Confidential information - Interview by Pieter Willem Blokland. 
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7.3.1.3 Endogenous measures in FarmDyn 

FarmDyn provides a range of endogenous measures covering feeding options, variation in 

crop mix, crop intensity levels, and adaptation of herd size. Endogenous measures are solely 

a reaction to an external shock, such as a carbon price, a subsidy to reduce the on-farm carbon 

emissions, or a carbon emission ceiling based on carbon emission levels in the baseline. As 

described above, some of the external measures can also be activated to be endogenous and 

will, therefore, not be elaborated again. 

 

Based on animal type and their respective output level, the model defines a certain set of 

feeding requirements with respect to, for example, net energy for lactation (NEL), dry matter 

(DM), and raw protein (XP). Each feeding requirement can be met by a certain optimized 

feeding ration that considers the prices and feed attributes of each feedstuff. For example, 

this optimized feeding ration could contain more NEL needed for the cow to meet the required 

DM and XP quantities. In the German version, the CH4 from the enteric fermentation is 

determined by the amount of NEL fed. It gives the model options to shift the feeding ration 

towards a feed composition where the NEL meets the required level to reduce CH4 emissions. 

In the Dutch version, the CH4 from the enteric fermentation is determined by a feed-specific 

methane emission factor (van Dijk et al., 2020). It allows the model to shift the feeding ration 

towards lower enteric fermentation methane levels.  

 

Related to the feeding adaptation, the model can adjust the crop mix on the farm to account 

for crops with less non-CO2 emissions as they require, e.g., less fertilizer from animal 

excrement or chemical fertilizer. A change in crop mix can also be triggered by a change in the 

feeding composition described above, leading to different emission levels from fields. This can 

result in either higher or lower non-CO2 emissions coming from the arable section of the 

model. Another crop-related farm management option to reduce emissions is the change in 

intensity level, defined by the amount of nitrogen fertilizer used to achieve a certain yield 

level. The relationship between the N-fertilizer applied, and the yield is implemented as a 

linearized N-response curve in the German (Heyn and Olfs, 2018) and Dutch versions (same as 

the German version). 

 

The “ultima ratio” measure to reduce emissions on farms is the reduction of the size of the 

herd. This entails both the reduction of the active dairy cows and the reduction of the required 

young stock for the replacements. The likelihood of this option being triggered is based on 

each cow's profit margin, which highly depends on the farm setup. Farms with high variable 

costs for the purchase of roughage and for exporting manure to other farms have a low profit 

margin, which is more sensitive to increasing carbon prices than farms that can produce the 

fodder relatively cheaply and have enough land to distribute their manure. 
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7.3.1.4 Non-CO2 emission database 

For this task, FarmDyn considers only on-farm non-CO2 emissions to delineate the emission 

boundaries clearly from emission positions in the macro-models. This way, we avoid double-

accounting. For example, imported feedstuff such as soybeans or derivates coming from South 

America with related land-use changes are covered by the macro-models. Hence, the 

emissions sources on farms include methane (CH4) from enteric fermentation and manure 

storage, nitrous oxide (N2O) emissions from the application of manure and mineral fertilizer, 

as well as other nitrogen compounds resulting in N2O emissions. In calculating emissions and 

emission factors, we follow the tier level used for the respective national inventory. In general, 

a higher tier level is associated with greater detail in the calculation of the related emission. 

The relevant references for accounting methodology and emission factors are shown country-

specific in Table 15. 

Table 15 References for accounting methodology and emission factors. 

Emission Source of emission Methodology applied 
 (Year; Tier level) 

Emission factor 
 (Year; Tier level) 

    German version Dutch version German version Dutch version 

CH4 Enteric 
fermentation 

(IPCC, 2019; Tier 
2) 

IPCC (2019; 
Tier 3) 

Haenel et al. 
(2020) 

van der Van der 
Zee et al. (2021)) 

CH4 Stable, storage, and 
pasture 

IPCC (2019; Tier 
2) 

 IPCC (2019; 
Tier 2) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

NH3 Emissions from 
stable and storage 

EMEP/EEA (2016; 
Tier 2) 

EMEP/EEA 
(2016; Tier 2) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

NH3 Manure application EMEP/EEA (2016; 
Tier 2) 

EMEP/EEA 
(2016; Tier 2) 

 Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

NH3 Excreta from 
pasture 

EMEP/EEA (2016; 
Tier 2) 

EMEP/EEA 
(2016; Tier 2) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

N2O, 
NOx, N2 

Emissions from 
stable and storage 

EMEP/EEA (2016; 
Tier 2) 

 IPCC (2019; 
Tier 1) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

N2O, 
NOx, N2 

Emissions from 
manure application 

IPCC (2019; Tier 
1) 

IPCC (2019; 
Tier 2) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

N2O, 
NOx, N2 

Emissions from 
excreta from 
pastures 

IPCC (2019; Tier 
1) 

IPCC (2019; 
Tier 2 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

NH3, 
N2O, 
NOx, N2 

Emissions from 
mineral fertilizer 
application 

IPCC (2019; Tier 
1) 

IPCC (2019; 
Tier 2) 

Haenel et al. 
(2020) 

van der Zee et al. 
(2021) 

N2O Indirect N2O 
emissions from prior 

IPCC (2019; Tier 
1) 

IPCC (2019; 
Tier 1) 

IPCC (2006) van der Zee et al. 
(2021) 
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NOx, NH3 and NO3 
emissions 

Note: A more detailed explanation of the environmental accounting in the Dutch Version can be found in 
the MIND STEP Deliverable 3.3 and for the German version on the FarmDyn documentation website 
under 

(https://farmdyn.github.io/documentation/FarmDynDocumentation/ModelDescription/Environment
alAccounting/environmental_accounting/). 

To illustrate the impact on the total emissions from the different emission factors and 

methodologies following the national emission inventory guidelines, we can see Table 16, 

where FarmDyn results for the German and Dutch versions are compared. The table shows 

the non-CO2 emissions differentiated by emission source, i.e., enteric fermentation, field, 

mineral fertilizer application, animal manure application, and stable and storage. The table 

shows that the primary source of emissions in both cases is enteric fermentation. However, 

the German version has considerably higher emissions due to its less detailed tier level. In 

contrast, the Dutch version exhibits higher emissions from the stable and storage parts and 

field parts of the farm. 

 

It should be noted that besides differences in GHG emission accounting, the Dutch and 

German versions of FarmDyn also differ regarding the system of feed requirements, the 

number of grassland options, and nutrient excretion per animal, which might impact the 

emission results. Table 16 shows that GHG mitigation technologies focusing on enteric 

fermentation will have a lower impact in the Dutch version, given the applied tier level. GHG 

mitigation technologies focussing on emissions from stable and storage will be less effective 

if the German version of GHG emission accounting is applied. 

Table 16 GHG emission by source on an average dairy farm in Germany and the Netherlands (kg CO2-
eq per kg FPCM) and index-based comparison between the German and Dutch farms. 

Emission source Emission type German 
version 

Dutch 
version 

Index (German 
version = 100) 

Enteric fermentation  
CH4 

0.73 0.56 0.77 

Field (indirect, crop residues, and leaching) 
N2Oind 

0.01 0.04 2.79 

Mineral fertilizer (application mineral fertilizer) 
N2O, N2Oind 

0.03 0.05 1.46 

Pasture (excreta on pasture) 

CH4, N2O, 
N2Oind 

0.04 0.04 0.99 

Animal manure (application animal manure) 
N2O, N2Oind 

0.04 0.02 0.57 

Stable and storage (stable and storage) 
CH4, N2O 

0.04 0.16 4.26 

Total 
CO2-eq. 

0.89 0.87 0.98 

Source: own calculations. 

https://farmdyn.github.io/documentation/FarmDynDocumentation/ModelDescription/EnvironmentalAccounting/environmental_accounting/
https://farmdyn.github.io/documentation/FarmDynDocumentation/ModelDescription/EnvironmentalAccounting/environmental_accounting/
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7.3.2 GLOBIOM 

The Global Biosphere Management Model (GLOBIOM) Havlík et al. (2014) is a partial 

equilibrium model that covers the global agricultural and forestry sectors, including the 

bioenergy sector. Commodity markets and international trade are represented in 59 economic 

regions here. Prices are endogenously determined at the regional level to establish market 

equilibrium to reconcile demand, domestic supply, and international trade. The spatial 

resolution of the supply side relies on the concept of Simulation Units, which are aggregates 

of 5 to 30 arcmin pixels belonging to the same altitude, slope, and soil class and the same 

country (Skalský et al., 2008). For crops, livestock, and forest products, spatially explicit 

Leontief production functions covering alternative production systems are parameterized 

using biophysical models like EPIC (Environmental Policy Integrated Model) (Williams, 1995), 

G4M (Global Forest Model) (Gusti, 2010; Kindermann et al., 2008), or the RUMINANT model 

(Herrero et al., 2013). For the present study, the supply side spatial resolution was aggregated 

to 2 degrees (about 200 x 200 km at the equator). Land and other resources are allocated to 

the different production and processing activities to maximize a social welfare function, which 

consists of the sum of producer and consumer surplus. The model includes six land cover 

types: cropland, grassland, short rotation plantations, managed forests, unmanaged forests, 

and other natural vegetation lands. The model can switch from one land cover type to another 

depending on the relative profitability of primary, by-, and final product production activities. 

Spatially explicit land conversion over the simulation period is endogenously determined 

within the available land resources and conversion costs considered in the producer 

optimization behaviour. Land conversion possibilities are further restricted through 

biophysical land suitability and production potentials and through a matrix of potential land 

cover transitions.  

 

GLOBIOM covers major GHG emissions from agricultural production, forestry, and other land 

use, including CO2 emissions from above- and belowground biomass changes, N2O from the 

application of synthetic fertilizer and manure to soils, N2O from manure dropped on pastures, 

CH4 from rice cultivation, N2O and CH4 from manure management, and CH4 from enteric 

fermentation. For this study, only results for non-CO2 emissions were reported. The model 

explicitly covers different mitigation options for the agricultural sector: technical mitigation 

options such as anaerobic digesters, livestock feed supplements, nitrogen inhibitors, etc., are 

based on Beach et al. (2015), and structural adjustments are represented through a 

comprehensive set of crop and livestock management systems parameterized using bio-

physical models, i.e., transition in management systems, reallocation of production within and 

across regions (Havlík et al., 2014), and consumers’ response to market signals (Valin et al., 

2014). The objective of task 5.2.5 was to improve the default representation of the technical 
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dairy mitigation options in GLOBIOM by extending the dairy-related mitigation option 

coverage using FarmDyn simulations. 

7.3.2.1 Explicit representation of mitigation measures in add-on technologies 

Technological agricultural non-CO2 mitigation options, such as anaerobic digesters and animal 

feed supplements, are based on the default set-up on the EPA mitigation option database 

(Beach et al., 2015a). Emission reduction potentials (% emission savings), costs (annual costs, 

i.e., direct costs and labour costs, change in input costs, and investment costs, i.e., for 

anaerobic digesters), and potential impacts on productivities (% increase/decrease) were 

taken from the EPA mitigation options database. Relative emission savings and productivity 

changes were then applied to the different management systems in the GLOBIOM model to 

calculate absolute changes in GHG emissions and product output. Mitigation options 

(characterized by GHG reduction, productivity changes, and economic costs) are implemented 

in the model as additional management activities which can be applied on top of a production 

system. Mitigation options are adopted if the economic benefit, i.e., through avoided carbon 

tax payments and potential productivity changes, exceeds the cost of an option. Detailed 

information on the parameterization of the different mitigation options for the agricultural 

sector is presented in (Frank et al., 2018). 

7.3.2.2 Emission database for the add-on technologies 

Parameters for the representation of agricultural non-CO2 mitigation options in GLOBIOM, as 

presented in Table 17, have been based for the EU in the past on the global EPA mitigation 

options database (Beach et al., 2015a). 

Table 17 Global average GHG reduction, impact on productivities, and costs for technical mitigation 
options for the livestock sector taken from Frank et al. (2018). Ranges across regions are presented 
in brackets. 

Mitigation option Non-CO2 reduction 
[% change] 

Productivity changes 

[% change] 

Annual costs 

[$ /TLU] 

Antibioticsa -2 (-6 to 0)  +5 6 (5 to 10) 

Bovine somatotropin (bST)b +5 (0 to +10) +12 (11 – 13) 110 (100 to 240)  

Propionate precursors -13 (-10 to -19) +5 41 (35 to 60)  

Anti-methanogen vaccination -10  +5 9 (5 to 20) 

Intensive grazing -14 (-13 to -15) -11 6 (5 to 20) 

Large-scale complete-mix 
digesters 

-85 - 25 (5 to 55) 

Large-scale covered lagoon -85 - 34 (10 to 70) 

Large-scale fixed-film digester -85 - 34 (10 to 60) 

Large-scale plug-flow digesters -85 - 38 (10 to 75) 
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Small-scale digester -50 - 7 (5 to 15) 

Centralized digesterc -90 - 8 (5 – 45) 

TLU: livestock unit, an animal of 250 kg live weight. a Antibiotics: No application in Europe and Taiwan (Maron et 
al., 2013)b bST: No application in Australia, Canada, Europe, Japan, or New Zealand (Dervilly-Pinel et al., 2014); c 
Centralized digesters are only applied in Europe. 

7.3.3 MAGNET 

MAGNET is a recursive dynamic multi-sector, multi-region computable general equilibrium 

(CGE) model. It covers the global economy comprehensively and utilizes the Global Trade 

Analysis Project (GTAP) database developed at Purdue University (Hertel and Tsigas, 1997). 

One key advantage of MAGNET in the context of GHG mitigation policies, compared to other 

models discussed, is its ability to capture intra-sectoral relationships within the agricultural 

sector and inter-sectoral linkages between the agricultural sector and other sectors. Due to 

its comprehensive nature, MAGNET not only simulates the flow of costs and benefits to other 

industrial sectors but also considers the impact on governments, consumers, and other 

producers.  

 

MAGNET encompasses important features, which are required to link them to highly detailed 

farm-level models such as FarmDyn. First, MAGNET covers 14 agricultural production systems, 

including distinct sectors for ruminants, non-ruminants, and the raw milk sector. This 

breakdown of livestock systems facilitates the interface with farm-level models that align with 

corresponding farm types. For instance, the MAGNET raw milk sector can be matched to the 

dairy branch in FarmDyn. Second, Magnet uses the comprehensive US EPA non-CO2 database 

(US EPA, 2013), encompassing methane (CH4) and nitrous oxide (N2O). These emissions from 

the livestock sectors are tied to the output variables and can be lowered based on implicit 

mitigation technologies in marginal abatement cost curves (MACCs). This disaggregation of 

GHG emission types and the use of MACCs enables an evaluation of emission reduction 

potential through various mitigation technologies, considering their effectiveness in reducing 

specific types of emissions. 

 

Tasks 5.2.5 aims to improve the existing MACCs in MAGNET twofold. First, the linkage of 

MAGNET and FarmDyn allows moving from two European MACC zones (see Figure 38) to 

country-specific MACCs in the EU for a better perception of country-level dynamics. This 

enables a better assessment of production and trade decisions on the European and country 

levels. Second, it assesses technology change by extending the underlying mitigation 

measures used to develop the MACCs.  
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Figure 38 Previous Aggregation of MACC data. 

7.3.3.1 Implicit representation of mitigation measures in MACCs 

This subsection describes the Marginal Abatement Curve (MAC) mechanism, its aim and 

implementation in MAGNET, and the refinement introduced through MINDSTEP. The Marginal 

Abatement Curves are an instrument that allows a more detailed perception of the changes 

in emissions intensity derived from the taxation of emissions: i) to determine the costs of 

implementation of new technology and ii) to study policies alternative to the carbon taxes 

(e.g., reimbursement for green technologies adoption). The MAC relies on the idea that any 

sectorial production is related to a certain level of emission, which contributes to the overall 

emission level depending on the quantity produced. As such, any production technology has 

a certain emission intensity. The starting point is to calculate the ad valorem equivalent tax 

equal to the revenue to ensure the targeted emission level. This revenue depends on the 

emission amount weighted for its indexed price divided over the value added of the relative 

emitting sector (the price of output multiplied by the quantity of output), multiplied by the 

emission tax rate. Conceptually speaking, this implies introducing a linear relationship 

between carbon price/tax and the change in emission intensity (Figure 39).   
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Figure 39 Conceptual Mac Curve 

Thus, the fundamental concept is emission intensity, i.e., emissions over production. Its linear 

relationship with the carbon tax/price is determined over an intercept and a slope of the linear 

function, which are the factors determining the overall response behaviour of the model. Even 

though MAGNET’s code is generic and allows it to accommodate all sectors, the current data 

availability is rather limited, which is the reason for the implementation of the link with 

FarmDyn, which provides detailed data on different greenhouse gasses. To be noted, MAGNET 

requires imposing a restriction on the intercept, i.e., to be non-negative. This ensures that we 

do not get an increase in emissions intensity for some small initial levels of carbon price. 

 

7.3.3.2 Database and underlying mitigation measures 

MAGNET uses GTAP 10 database with the base year 2014 (Aguiar et al., 2019) and provides 

long-term projections spanning 2040 and beyond. The projections take into account yield and 

economic growth assumptions aligned with the Shared Economic Pathway (SSP2) (Fricko et 

al., 2017). Additionally, the model integrates emissions data from the US EPA database (US 

EPA, 2013), encompassing methane (CH4) and nitrous oxide (N2O) emissions. Furthermore, 

CO2 emissions from the GTAP Energy-Environmental database (GTAP-E) are included to 

provide a comprehensive coverage of carbon dioxide emissions within the model. 

 

The database utilized to develop the Marginal Abatement Cost Curves (MACCs) includes 

information on mitigation technologies and greenhouse gas (GHG) reduction practices in 

farming sourced from the US EPA (2013). This database adopts an engineering approach, 

providing cost estimates and associated abatement quantities for various mitigation 

technologies ranked based on their relative magnitude. The specific set of mitigation 

technologies represented in the MACCs for a given region and production system depends on 

factors such as their availability and applicability. This includes considerations such as 
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technological restrictions and approvals that determine which mitigation technologies can be 

incorporated into the MACCs. 

7.4  Farm sample 

For each of the macro models, a distinct farm-level sample is developed. For GLOBIOM, a 

typical extensive and intensive dairy farm is chosen based on national farm-level data. Results 

from these typical farms are then assumed to be able to parameterize add-on technologies 

for all EU countries. For constructing the MACCs in MAGNET, data on farms for each EU 

country are used with the German version of the Farmdyn model. 

7.4.1.1 Farm sample based on typical farm approach 

This section describes the source of farm-level data for the German and Dutch farm samples 

used in the linkage to GLOBIOM. The farm population for the Dutch version is derived from 

the Farm Accountancy Data Network (FADN), which provides economic information on 

farmers from a sample of the entire farm population. It covers all member states of the 

European Union (EU) and is used to evaluate new and existing policy measures. The data 

provided is based on harmonized bookkeeping principles and covers only agricultural holdings 

which can be considered commercial. For the Dutch version, a sub-sample of the Dutch FADN 

version called “Bedrijveninformatienet” (BIN) containing data covering roughly 1500 

agricultural and horticultural enterprises is used.  

 

A synthetic farm population (Pahmeyer et al., 2021) is used for the German version, developed 

based on the German Farm Structure Survey (2016)23. In this farm population, each farm is 

characterized based on its farm type, its agricultural land in hectares differentiating between 

arable and grassland, and their animal numbers in livestock units differentiating between 

animal types. The farm type used is based on the main farming activities of a farm and their 

relative contribution to the standard output of those activities following the EU typology of 

2008 (European Commission, 2008). Using public sources, the synthetic farm population is 

developed for the federal state of North-Rhine Westphalia (NRW). For this specific task, we 

are using the farm sample developed for the “Rheinische Revier” population. Key farm data 

for both the German and Dutch farms are given in Table 18. 

Table 18 Country and intensity-specific key farm characteristics used in FarmDyn 

 Intensive  Extensive  

  Dutch German Dutch German 

Number of cows [LU]  117 220 98  34 

 

23  This dataset is available here 

https://www.it.nrw/statistik/wirtschaft-und-umwelt/land-und-forstwirtschaft/struktur-der-landwirtschaftlichen-betriebe
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Arable Land [ha] 11 160  9 8 

Grassland [ha]  44 10 54 18 

Share of grassland [%]  80 5.6 86 69 

Milk Yield [‘00 kg]  87 80 87 75 

Number of farms [n] 121  1 91  1 

 

In the simulation scenarios, input and output prices are set to the default values of the 

corresponding country-specific FarmDyn version. This covers, among other things, prices for 

milk, crops, livestock, machinery, and hired workers. Technology coefficients such as labour 

and machinery requirements per on-farm operation and activity are also country-specific.  

 

7.4.1.2 EU-wide farm-level database 

The farm accountancy data network (FADN)  (European Commission, n.d.) monitors farms’ 

income and business activities in the EU Member States. FADN follows harmonized 

bookkeeping principles and is based on national surveys. It covers agricultural holdings that 

are considered commercial, based on size criteria, and aims to provide representative data 

within the category's region, economic size, and farm type. Across all Member States, the size 

of the FADN sample was above 83000 farms in 2019. FADN comprises information on farm 

endowments like labour force, area, herd size, and depreciation on machinery and buildings, 

to name a few. Further, financial accounting data for the whole farm are available: 

expenditures for variable inputs like fertilizer, pesticides, or purchased animal feeds.  

 

For the construction of the database for the EU-wide version of FarmDyn to generate MAC 

curves for the MAGNET model, a sub-sample of dairy farms (farm type number “TF45”) with 

at least five dairy cows, and a milk yield over a reasonable range (>0 and <=12000 

kg/cow/year), was selected for the year 2019, resulting in more than 11000 individual farms.  

 

While it is technically possible to execute FarmDyn for all individual farms, this is not always 

practical for such large samples. Apart from long computation times, the main problem is that 

FADN provides information on farm endowments and output coefficients but not on input 

coefficients by production activity. This information can usually be derived from handbooks 

on standard farming practices or, in some cases, from farm surveys but is generally not 

available for individual farms in FADN. Therefore, the modelled farms would not differ in their 

cost structure, resulting in the repeated execution of very similar model instances for farms 

with comparable endowments and productivity. For this reason, individual farms are often 

grouped to generate typical or average farms with comparable characteristics, depending on 

certain projects or research questions.  
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In the case of this report, representative farms for each NUTS2 region in the FADN were 

created by extracting the relevant variables necessary for running the FarmDyn model and 

aggregating them at the NUTS2 level using the mean, weighted with the SYS02 weights. Table 

19 shows an overview of relevant farm structural variables extracted from the FADN. 

Table 19 Weighted mean of the variables of the FADN used in FarmDyn 

NUTS0 Number 
of Cows 
[LU] 

Arable 
land 
[ha] 

Grassland 
[ha] 

Milk Yield 
[‘00 
kg/cow/year] 

Number 
of Calves 
[count] 

Number 
of Heifers 
[count] 

Share of 
Grassland 
[%] 

n 

AT 21.35 4.78 21.31 67.27 12.18 3.04 0.81 669 

BE 82.43 20.88 38.26 78.23 33.97 11.67 0.60 205 

BG 33.25 8.63 10.85 44.95 13.66 3.05 0.30 45 

CZ 139.40 161.28 152.79 68.28 86.16 22.80 0.55 110 

DE 72.44 35.83 40.76 71.97 39.62 10.91 0.60 2530 

DK 179.57 104.34 66.33 92.27 97.87 9.66 0.40 391 

EE 116.02 109.68 180.79 72.67 55.79 13.84 0.81 98 

ES 59.98 8.30 21.52 75.77 19.14 9.73 0.72 766 

FI 42.40 23.42 51.39 87.99 18.52 1.30 0.72 229 

FR 65.38 40.42 57.06 67.78 31.77 14.61 0.60 847 

HR 20.96 14.05 10.44 52.25 9.96 1.78 0.39 131 

HU 118.98 88.79 39.93 62.20 64.15 11.38 0.26 67 

IE 83.88 1.50 62.90 57.67 51.36 10.91 0.98 298 

IT 57.59 12.95 14.14 65.71 26.19 9.60 0.47 613 

LT 21.95 13.02 37.42 54.90 9.83 2.14 0.75 219 

LU 81.74 36.72 66.77 75.93 46.62 19.31 0.64 193 

LV 25.08 13.22 47.85 56.82 11.68 2.39 0.82 242 

MT 72.72 3.82 0.00 69.10 43.65 4.54 0.00 71 

NL 101.60 9.42 49.23 85.74 29.17 4.17 0.85 355 

PL 21.98 13.96 11.21 57.24 12.19 2.15 0.44 2082 

PT 36.06 7.17 9.58 68.82 20.94 4.60 0.36 239 

RO 12.10 6.67 5.77 43.87 7.45 0.38 0.39 180 

SE 89.88 46.39 115.14 84.97 28.61 16.45 0.72 320 

SI 20.87 4.45 14.00 53.81 10.14 2.86 0.75 138 

SK 292.99 374.56 557.32 65.57 146.52 32.41 0.58 34 

UK 147.43 17.24 106.64 72.53 68.72 25.82 0.90 444 

 

In addition to farm specific data relating to specialist dairy farms, yield data was aggregated 

from all farms from the FADN to get more precise yield information since using only dairy 
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farms would have yielded wrong parameters due to outliers or small sample sizes. The yields 

were first calculated per farm by dividing the production quantity of each crop over their 

corresponding area. Then, the yields were aggregated for each NUTS level. At the NUTS0 level, 

missing values were imputed using the EU means, and at subsequent levels, missing values 

were imputed with the values of the higher NUTS level. However, grassland yields for the 

different management practices are not readily available from the FADN database, so data 

was taken from the CAPRI model on the national grassland yields for each country. Then, 

knowing the default yields for Germany as presented in the FADN, the rest of the grassland 

production for each country was divided by the German national production to get scaling 

factors that were multiplied by the default yields in the FADN. Table 20 presents the weighted 

mean of the calculated yields for the arable and grass crops from FADN data and the CAPRI 

database.  

Table 20 Weighted mean of the calculated yields [t] for arable crops in the FADN and mean grassland 
management yields scaled using the default values in FarmDyn and data on total yields in Europe 
from CAPRI grassland data. 

NUTS0 CM SM SC SBS WB SB WR WW PT gra1 gra2 gra3 gra4 

AT 10.4 30.7 6.1 1.7 5.0 70.7 2.9 5.2 22.0 4.1 4.8 4.1 5.8 

BE 8.8 17.8 6.1 2.6 7.7 79.4 3.8 8.2 22.0 7.3 8.6 7.3 10.4 

BG 6.9 22.7 2.6 1.4 3.9 61.5 2.5 4.5 22.0 2.0 2.4 2.0 2.9 

CZ 6.3 32.1 5.5 2.5 4.5 58.8 3.4 5.2 21.2 3.4 4.0 3.4 4.8 

DE 8.5 28.5 6.6 3.0 5.9 64.6 3.1 6.6 22.0 8.5 10.0 8.5 12.0 

DK 7.5 9.5 5.0 2.0 4.1 57.4 3.2 5.7 21.0 7.2 8.4 7.2 10.1 

EE 8.7 30.0 2.4 1.7 2.4 61.5 1.5 2.7 15.5 3.6 4.2 3.6 5.1 

ES 13.1 30.9 2.8 1.7 3.1 97.8 2.5 4.0 27.0 2.8 3.4 2.8 4.0 

FI 8.7 21.6 3.1 1.9 3.1 35.7 1.4 2.6 11.3 5.1 6.0 5.1 7.2 

FR 7.8 30.7 4.9 2.8 5.7 83.4 3.0 6.2 27.3 4.1 4.9 4.1 5.8 

HR 8.7 41.3 4.7 2.6 4.1 52.8 2.8 5.0 22.0 7.3 8.6 7.3 10.4 

HU 7.9 34.3 3.6 1.9 4.2 64.2 3.2 4.8 22.0 3.5 4.1 3.5 4.9 

IE 8.7 30.7 5.7 3.0 6.0 61.5 4.5 8.3 22.0 5.4 6.4 5.4 7.7 

IT 10.5 47.7 3.7 2.5 3.8 56.2 2.6 5.2 22.2 3.1 3.7 3.1 4.5 

LT 4.4 27.7 3.0 2.1 2.8 51.7 2.3 3.3 22.0 4.3 5.1 4.3 6.1 

LU 8.7 30.7 7.4 1.3 5.4 61.5 3.2 5.8 22.0 7.3 8.6 7.3 10.4 

LV 8.7 11.0 2.6 2.0 2.2 61.5 1.8 2.6 22.0 4.8 5.7 4.8 6.9 

MT 8.7 30.7 4.2 2.3 4.3 61.5 2.8 5.0 22.0 2.6 3.1 2.6 3.7 

NL 8.2 38.8 4.0 2.9 6.5 75.1 2.8 7.9 35.1 8.9 10.5 8.9 12.6 

PL 8.6 36.0 5.0 1.7 3.6 59.6 2.8 4.4 22.0 3.4 4.0 3.4 4.8 

PT 4.9 34.0 1.7 1.9 5.5 61.5 3.3 3.5 12.9 4.7 5.5 4.7 6.6 

RO 6.4 21.5 3.9 2.0 3.9 31.5 2.5 4.4 22.0 2.6 3.0 2.6 3.7 

SE 2.9 30.3 3.5 1.8 3.3 55.7 2.1 4.1 18.2 5.1 6.0 5.1 7.3 
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SI 9.3 30.7 4.0 1.9 4.1 41.5 2.8 4.2 22.0 1.5 1.8 1.5 2.2 

SK 8.3 34.5 3.9 2.1 3.4 57.5 2.9 4.3 16.6 3.2 3.8 3.2 4.6 

UK 20.3 36.0 5.3 2.8 5.7 68.7 3.4 7.8 36.2 5.4 6.4 5.4 7.7 

CM –Corn maize; SM – Silage maize; SC – Summer cereals; SBS – Sugar beans; WB – Winter barley; SB- Sugar 
beet; WR – Winter rape; WW – Winter wheat; PT – Potatoe; gra1-4 – gras types differing in yield and number of 
cuts 

In the simulation scenarios, prices were assumed to be the same as the default prices in 

FarmDyn, corresponding to German prices. This includes the milk price, output prices for crops 

and livestock, manure export and import, and prices for machinery and hired workers. Labour 

requirements per each type of operation are also considered to be the same for all farms, 

taking the default values for Germany in FarmDyn. Since we assume the same carbon tax levels 

for all farms, this corresponds to an indexation of tax rates to German farms under different 

farm structures across the EU. Applying the same tax rate to all countries might affect different 

farms differently if they have different cost structures. Perhaps the average farm in some 

countries may or may not afford the tax, whereas in other countries, the tax may be too low, 

so assuming equal prices everywhere means that the applied tax shares the same effect that 

it would on a German farm that has the same farm structure (number of cows, area of arable 

land, grassland, milk yield, among others). This could also be interpreted as the effect of a 

carbon tax in different countries that would have the same effect per farm as a carbon tax in 

Germany. Overall, since EU countries differ in their farm structure from the German case, we 

expect that the general effect will be different than in Germany. 

7.5  Results for improved parameterization of macro-models 

7.5.1 Scenario overview 

Before presenting the results for each of the linkages between FarmDyn and the macro-
models GLOBIOM and MAGNET, a summary of the scenario in the macro-models and the 
delivered information from FarmDyn is given. The following Table 21 shows each of the most 
important scenario information. 

Table 21 Key assumptions in scenario setup 

   GLOBIOM MAGNET 

Economic Projection SSP2 SSP2 

Base year 2000 2014 

Projection year 2030 2040 
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GHG price trajectory  0, 10, 25, 50, ..., 200 
[USD2000/tCO2-eq.]24 

50 
[USD2014/tCO2-eq.] in Europe 
and global implementation  

Mitigation technology 
representation 

Explicit 
(add-on technology) 

Implicit 
(MACC) 

Derived from 
FarmDyn 
simulation 
setup 

Mitigation measures  Bovaer, vegetable oil, 
extended lactation, 
methane-reducing 
concentrate 

Bovaer, all other endogenous 
measures (section 7.3.1.3) 

Underlying emission 
accounting 

National inventory: 

Germany 

The Netherlands 

German national inventory 

Farm type – Production 
system – Sector 

Dairy farm to bovine 
livestock system 

Dairy farm to the raw milk 
sector 

Farm sample approach Typical farm for the region 
(Rheinische-Revier, 
Germany) and country 
(Netherlands) 

Average (representative) farm 
at NUTS2 level for all EU 
member states 

Intensity of farm-level Intensive and extensive Not differentiated 

 

Both macro-models use the same yield and economic growth projection aligned with the 
Shared Economic Pathway (SSP2). The base year for GLOBIOM is 2000, whereas MAGNET's 
base year is 2014, with the projection year of 2030 for the former model and 2040 for the 
latter. Two different GHG price trajectories are chosen. This is based on the fact that, in the 
parameterization of the add-on technologies with FarmDyn data, no specific carbon tax 
simulation runs had to be made, leaving the GHG price trajectories only used in the simulation 
with GLOBIOM. In contrast, FarmDyn had to be run with different carbon price levels to 
populate the MACC curves of 0, 65, and 130 EUR/tCO2-eq. Since the MACC curves are linear, 
only a limited number of carbon price levels were required to obtain information about the 
intercept and the slope of the functional form. In the simulation with MAGNET, as stated in 
the table above, only one carbon price was chosen to assess the impact of the new mitigation 
technologies, namely 50 USD/tCO2eq. The representation of mitigation technology in both 
macro-models differs as GLOBIOM has an explicit one, whereas MAGNET has an implicit one.  

In addition to the simulation scenario setup in the macro-models, the simulation setup with 
FarmDyn for the linkage with the respective model differed. This is not only to accommodate 
differences in the macro-models but also to use and explore the versatility of FarmDyn to 
provide a wide range of information to improve macro-models. This includes the 
representation of two or more intensity levels (FarmDyn to GLOBIOM), the use of distinct 

 

24 GHG prices of 50/100 USD2000/tCO2eq correspond approximately to 65/130 Euro2020/tCO2eq 
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emission accounting schemes (FarmDyn to GLOBIOM), and the extension of EU-28 member 
state-specific MACC results (FarmDyn to MAGNET).  

In the macro-model simulation, GLOBIOM compares the impact on the GHG emission 
reduction potential and the abatement costs with and without the extended portfolio of 
mitigation measures illustrated at MACCs and for different European regions. MAGNET 
instead is used to assess the role of the (improved) MACC (regional detail and technological 
implementation) under a 50 USD/tCO2eq carbon tax, both when the tax is applied only in 
Europe and in Europe and the Rest of the World to compare the trade, production and 
macroeconomic implication of adopting this measure only in the EU.  

7.5.2 Farmdyn to GLOBIOM 

7.5.2.1 FarmDyn results for add-on technologies 

We run simulations for each country, i.e., Germany and the Netherlands, and one typical 

intensive and extensive dairy farm, respectively. For each of the country and intensity 

combinations, we provide farm-level results for the baseline and for each add-on technology 

(Bovaer®, extended lactation (ExtLact), vegetable oil additive (VegOil), and methane-reducing 

concentrate (Conc_10). Table 22 below shows the most relevant variables used in the 

parameterization step of the add-on technologies in GLOBIOM. Profit is used to determine the 

related abatement costs based on the difference in profit between the baseline and the add-

on technology. Global warming potential (GWP) and global warming potential from enteric 

fermentation (entGWP) are used to determine the reduction in emissions from the add-on 

technology. The number of cows is provided to determine the relative costs and emissions 

based on the livestock unit level. 

Table 22 Interface variables in the linkage between FarmDyn and MAGNET 

  Intensive Extensive 

  Dutch German Dutch  German 

GWP [t CO2-
eq.] 

Baseline 909 1640 791 258 

Bovaer® 729 1270 639 198 

ExtLact 895 1561 779 247 

VegOil 735 1287 656 220 

Conc_10 897 - 780 - 

Profit ['000 
Eur 2020] 

Baseline 146 327 167 41 

Bovaer® 139 314 161 39 

ExtLact 144 328 162 38 

VegOil 136 310 146 36 

Conc_10 144 - 165 - 

Baseline 601 1232 506 201 
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entGWP [t 
CO2-eq.] 

Bovaer® 421 863 354 140 

ExtLact 591 1158 499 191 

VegOil 427 878 371 161 

Conc_10 589 - 495 - 

Cows [LU] Baseline 117 220 98 34 

Bovaer® 117 220 98 34 

ExtLact 117 220 98 34 

VegOil 117 219 98 34 

Conc_10 117 - 98 - 

Heifers [LU] Baseline 20 48 17 7 

Bovaer® 20 48 17 7 

ExtLact 20 31 17 5 

VegOil 17 48 15 7 

Conc_10 20 - 17 - 

LU – livestock unit; GWP – global warming potential; entGWP – GWP stemming from enteric 
fermentation 

The means of reducing the GHG emissions on dairy farms primarily target emissions stemming 

from enteric fermentation either directly with Bovaer® or vegetable oil additives or indirectly 

through reducing heifers based on extended lactation. The results show the expected 

direction for all country and intensity combinations, i.e., a decrease in profits and a reduction 

in GWP and entGWP. As we show only exemplary farm-level results provided to GLOBIOM, 

we cannot make a meaningful comparison between the different intensities and countries 

based on the differences in initial endowments, especially total acreages and type of land, as 

well as the differences in the national GHG accounting schemes in the Netherlands and 

Germany. 

7.5.2.2 Intensity parameterized add-on technologies in GLOBIOM 

Two datasets were provided by FarmDyn (Germany, Netherlands) containing key parameters 

for the representation of new dairy addon technologies (Bovaer®, vegetable oils, extended 

lactation time, concentrates) for an extensive and intensive livestock system in GLOBIOM. This 

dataset included information on changes in GHG emissions, productivities, feed composition, 

and farm profits in response to the adoption of a mitigation technology.  

 

GHG reduction efficiencies for each FarmDyn mitigation technology and management system 

were calculated by comparing a mitigation scenario with the baseline values for CH4 and N2O 

emissions from enteric fermentation, stable and storage, manure application, and pastures 

and mapped to the equivalent emissions accounts from livestock in GLOBIOM. Multiplying 

these technologies and management-system-specific GHG reduction efficiencies (%) with the 
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default GHG emission factors for dairy production systems in GLOBIOM yielded the absolute 

GHG abatement (tCO2eq per livestock unit (LU)) per technology in GLOBIOM.  

 

The costs for each mitigation technology were calculated using information on marginal 

abatement costs from FarmDyn. Therefore, first, the change in farm profits in response to the 

adoption of a specific technology was calculated and converted from Euros2020 (FarmDyn) to 

USD2000 (GLOBIOM). The change in profits was then divided by the GHG emission savings for 

each technology and interpreted as a proxy for the adoption costs of a certain technology in 

GLOBIOM (USD2000/tCO2eq emission reduction). Multiplying these costs with the total 

emission savings per technology (tCO2eq/LU) yielded the total costs of a given technology in 

GLOBIOM (USD2000/LU).  

 

Next to the FarmDyn information on GHG emission reduction coefficients and costs, changes 

in the livestock feed baskets (for wheat, corn, and soya) were reflected in GLOBIOM for each 

technology (where relevant). For example, vegetable oils as feed additives would require 

additional demand for soya in livestock feeds that would need to be supplied. 

 

The parameters for the extensive FarmDyn system were mapped to the more grass-based and 

other dairy production systems (LGH, LGA, LGT, OTHER) in GLOBIOM while the parameters for 

the intensive FarmDyn system were mapped to the mixed-cereal feeding and urban dairy 

production system (MRH, MRA, MRT, URBAN). Results for GHG reduction efficiency and costs 

of each mitigation measure are presented in intensity and country-specific in Table 23.  

Table 23 Converted key FarmDyn variables for the linkage with GLOBIOM 

  Intensive Extensive 

  Dutch German Dutch  German 

GHG reduction 
efficiency [%] 

Bovaer -21% -25% -21% -25% 

ExtLact -2% -6% -2% -5% 

VegOil -21% -24% -19% -17% 

Conc_10 -1% - -2% - 

Costs 
[USD2000/tCO2e] 

Bovaer 29 26 29 25 

ExtLact 85 -8 271 183 

VegOil 43 34 112 93 

Conc_10 137 - 135 - 
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7.5.2.3 New MAC curves in GLOBIOM 

Nine GHG price trajectories were included in the baseline SSP2 scenario to derive marginal 

abatement cost curve (MACC) for agricultural non-CO2 emissions with- and without 

representation of new FarmDyn mitigation technologies in GLOBIOM. GHG prices (10, 25, 50, 

75, 100, 125, 150, 175, and 200 USD/tCO2eq) were implemented on EU27 agricultural non-

CO2 emissions (CH4 from enteric fermentation, manure management, and rice cultivation, N2O 

from fertilizers, manure applied and dropped on pastures, and manure management) in 2030. 

By contrasting results from the GHG price scenarios to the baseline without mitigation efforts 

in 2030, the mitigation potentials and associated costs in the form of a MACC were derived. 

 

Both parameterizations of the new mitigation options, as quantified by FarmDyn for Germany 

(UBO) and the Netherlands (WR), yield consistent results in terms of additional GHG 

abatement once implemented GLOBIOM. In both set-ups, agricultural non-CO2 mitigation 

potentials increase by 27-30 MtCO2eq/year in 2030 at 100 USD/tCO2eq (~130 Euros/tCO2eq), 

as shown in Figure 40. Hence, the adoption of new mitigation technologies can deliver an 

additional 5% of GHG abatement in EU agriculture as emissions reductions relative to the 

baseline levels increase from 33% to 38% at 100 USD/tCO2eq in 2030. Especially the 

application of Bovaer (15-16 MtCO2eq/year) and enhanced vegetable oils as livestock feed 

(11-12 MtCO2eq/year) are responsible for the additional abatement potentials. In contrast, 

enhanced lactation period or increased concentrate feeds seem to play only a minor role and 

are less cost-effective (Figure 40). New FarmDyn technologies are cost-effective at GHG prices 

above 25 USD/tCO2eq, and most of the potential is already realized with GHG prices below 

100 USD/tCO2eq. 

 

 

Figure 40 Panel a) shows the total agricultural non-CO2 mitigation potential (% change to baseline emissions) 

for EU agriculture in 2030. Default – no new FarmDyn technologies, UBO -FarmDyn technologies from 
Germany, WR – FarmDyn technologies from the Netherlands. Panel b) shows the contribution of each 
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new technology to the increased emission reduction potential compared to the default set-up at 100 
USD/tCO2eq in 2030.  

Across EU regions, our results suggest that the new mitigation technologies contribute 

additional GHG mitigation at 100 USD/tCO2eq primarily in Middle and Western EU member 

states (14-15 MtCO2eq/year), followed by Southern (~5 MtCO2e/year) and Eastern (~5 

MtCO2e/year) EU countries (Figure 41). In relative terms, again, Middle and Western EU 

member states can at most increase their non-CO2 emission reduction compared to the 

default MACC at 100 USD/tCO2eq (+ 8-9%), followed by Northern (+ 6-7%) and Southern (+ 5-

6%) EU countries likely due to different shares of intensive/extensive livestock production 

systems with altering FarmDyn mitigation option parameterization.  

 

 

Figure 41 EU agricultural non-CO2 mitigation potentials (Panel a – absolute mitigation potentials, 
Panel b – relative changes compared to the baseline) across EU regions. EUB – Baltics member states, 
EUE – Eastern member states, EUN – Northern member states, EUC – Middle and Western member 
states, EUS – Southern member states. Solid lines represent the default MACC in GLOBIOM without 
new FarmDyn technologies, pointed lines – MACC including FarmDyn technologies from Germany 
(UBO), dashed lines – MACC including FarmDyn technologies from the Netherlands (WR). 

 

7.5.3 FarmDyn to MAGNET 

7.5.3.1 Relevant FarmDyn results for MACCs 

To parameterize the MACCs in MAGNET, FarmDyn provides information on the relative 

change in total GWP at a given carbon tax for all EU member states for all endogenous 

measures in FarmDyn and with the additional exogenous abatement options Bovaer® and 

extended lactation. We show exemplary results for the relative change in total GWP at given 

carbon prices in Figure 42 for all farms at the NUTS2 level. We can see that for the scenario 

with solely endogenous measures, a reduction of total on-farm GWP of roughly 3% at a carbon 
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tax of 65 EUR/CO2-eq can be seen, with an average reduction of 7% at a carbon tax of 130 

EUR/CO2-eq. Including Bovaer® and extended lactation as an abatement option increases the 

average relative reduction of total on-farm GWP to 23 and 25% for a carbon price of 65 and 

130 EUR/CO2-eq, respectively. 

 

Figure 42: Box-Plot of single farm level results of FarmDyn for each average NUTS2 farm for all member states 

once with limited abatement options in FarmDyn and with the additional abatement option Bovaer 
Dots – single farm results from FarmDyn; Diamond - weighted mean 

Figure 43 provides a graphical illustration for all EU member states for the given scenarios 

with only endogenous options and the additional abatement options for different carbon price 

levels. As indicated by the box plots above, our results show an overall reduction in global 

warming potential, which becomes more uniform once we add Bovaer® and extended 

lactations into the mix. The only exception is Lithuania since the average farms in this country 

cannot afford Bovaer, and because the rest of the countries could, most of the reduction in 

GWP seen is due to a reduction in methane stemming from enteric fermentation.  
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Figure 43 Reduction of GWP per country in the EU-28 given carbon taxes of 65 and 130 EUR/t CO2eq with 

endogenous mitigation measures and additional mitigation measures in some countries (Bovaer® and 

extended lactation) 

 

The endogenous measures in FarmDyn include, as described in section 7.3.1.3, the reduction 

of herd size, which ultimately is expressed in a reduction of milk output in FarmDyn. Based on 

our results and the given carbon tax, the milk output remains practically unchanged except at 

a carbon tax of 130 EUR/t CO2eq in a few countries, as seen in Figure 44. Bulgaria and Romania 

reduce their milk output by about 10 – 15% with a carbon tax of 130 EUR/t CO2eq, but this 

reduction is ameliorated when including additional mitigation measures. The United Kingdom 

also reduces milk output at 130 EUR/t CO2eq by about 5%. However, this effect is lost when 

including additional mitigation measures.  
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Figure 44 Reduction of milk output per country in the EU-28 given carbon taxes of 65 and 130 EUR/t CO2eq 

with endogenous mitigation measures and additional mitigation measures in some countries (Bovaer® and 

extended lactation) 

7.5.3.2 MACCs for the raw milk sector 

The data from the FarmDyn simulation runs are the basis for constructing the country-specific 

MACCs for two different emissions: i) methane (CH4) and ii) nitrous oxide (N2O). It is 

important to note that the intercept for the linear MACC curve is imposed to be non-negative, 

regardless of the values FarmDyn provides, to avoid issues of increasing emission intensity at 

small initial levels of carbon prices in MAGNET. 

7.5.3.3 Emission intensity reduction for non-CO2 emissions 

Figure 45 shows significant differences both in slope and intercept between European 

countries, which signals a different emissions reduction sensitivity for the same carbon tax 

between countries based on the heterogeneity present in the farm sample data. Further, the 

implementation of MAC curves developed with FarmDyn data for endogenous measures 

without novel technologies (new) shows a similar reduction range compared to the old MACCs 

used in MAGNET. 
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Figure 45 Upper left and right – Marginal abatement cost curve for CH4 and N2O with new FarmDyn MACCs 

without novel technologies for each EU-28 member state; Lower left and right – Marginal abatement cost 
curve for CH4 and N2O for two European regions (east and west) used previously in MAGNET 

 

Figure 46 Marginal Abatement Cost Curve for CH4 with novel technologies (new+tech) for all EU-28 member 

states 

 

Based on the results of Figure 46, we can see the impact of Bovaer® and extended lactation 
on the emissions from the enteric fermentation increase the reduction potential for CH4, 

strongly differentiating the MACC structure for CH4, even with respect to the updated N2O 
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curve, which is almost equal in the case of the previously used MACCs in MAGNET. This 
suggests the strong potential of technological shifts in the MACC curves.  

7.5.3.4 Impact of new MACC implementation in MAGNET  

Table 24 shows the impacts in Europe of a global tax of 50$ per tonne of C02 by 2040. It shows 

that the previous MACC calibration, based on a general regional aggregation in Eastern and 

Western Europe, was leading to an overestimation of the power of the global carbon tax. Table 

24 shows that a $50 carbon tax initially resulted in about -15% CO2 equivalent emission 

reduction. The FarmDYN parametrized MAC curves provide a slightly lower reaction on the 

aggregate EU28 level (about -10.4%). Despite these (rather small) differences, it can be 

concluded that the FarmDyn calibrated MAC curves provide a solid improvement of the 

MAGNET model as the results are based on bottom-up regionally differentiated farm 

abatement possibilities. Table 24 also shows the potential of technological change, specifically 

the Bovaer® and extended lactation implementation, in terms of CH4 emissions and overall 

impacts (new + tech). Indeed, when allowing for technological change, which has been 

calibrated with FarmDyn results, we see that a lower loss in European milk production is 

associated with a sensitively lower emission level in both CH4 and CO2 equivalent emissions 

at the European level – emission decline is up to -44.3% instead of -10.41%. One of the biggest 

differences between the old and the new implementation is the ability to observe trends at 

the country level instead of only at the European regional level.  

 

Table 24 Relative change of key variables for milk for old, new, and new+tech mitigation measures 
for EU-28 before and after implementation of a global tax of 50 USD/t CO2eq., compared to the 
baseline. 

 
Old  New New + Tech 

Production Volume -0,80 -1,59 -0,73 

Producer Market Price 8,7 15,9 13,24 

Exports Volume 24,4 80,3 108,4 

Imports Volume -62,8 -43,3 -48,2 

CH4 Emissions -15,6 -9,53 -55,2 

CO2 emissions -0,5 -1,32 1,48 

N2O Emissions -14,8 -13,79 -12,7 

CO2 Eq emissions -15,2 -10,41 -44,3 

Note: “Old” refers to results under original MAC curves in MAGNET, “New” refers to results used with MAC curves 
parametrized from FarmDyn under constant technology, and “New+tech” refers to FarmDyn-based MAC curves 
allowing for technology changes 
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Hereafter, two sets of implications can be derived from Table 25 and Table 26. The first 

concerns the difference in policy implementation. When the carbon tax is implemented only 

in Europe and not in the other global regions, the European response to the policy is more 

homogeneous and has stronger intensity. As only EU milk production is “penalized” by 

additional costs, the reductions in milk production are indeed more substantial than in the 

global tax case. Being normally an exporting region, Europe starts to rely strongly on milk 

imports, acquiring the product from the regions in which the price is not inflated by the 

additional carbon tax. Indeed, it can be noted that the Rest of Europe (REU), which is 

unaffected by tax imposition, has diverging trends from the rest of the countries, not having 

a sensitive spike in import dependency and increasing production and exports (but also 

emissions).  

 

The differences in the absolute percentage changes in production and overall CO2 equivalent 

emissions between the two scenarios, i.e., imposing the tax only in Europe or also at the global 

level, are significant but relatively low. The effects are relatively similar because the EU region 

bears the same tax burden in the two cases. Nevertheless, when the carbon tax is applied to 

the whole world, the equally distributed taxation burden leads to different specialization 

choices based on specific country production and economic incentives. For example, without 

considering the implementation of technological change, Belgium finds it convenient to 

increase substantially (in relation to the other countries) its milk production, which also 

implies an increase in its emissions, resulting in it being the only country with a net increase 

in its CH4 and CO2 equivalent emissions. Nevertheless, this side effect in terms of emissions 

is mitigated by the implementation of the new technology, as this trend does not appear in 

Table 26, where Belgium can increase its milk production by the same amount without the 

side effect of increasing emissions.  
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Table 25 a) Relative change of production volume, producer market price, export and import volume 
of milk for EU-28 and rest of Europe at a 50 USD/tCo2eq price in EU only (EU 50) and globally (WORLD 
50) with new MACs without novel technologies. b)  Relative change of CH4, CO2, N2O, and CO2eq 
emissions for EU-28 and rest of Europe at a 50 USD/tCo2eq price in EU only (EU_50) and globally 
(WORLD_50) with new MACs without novel technologies. 

a) 

 
b) 

 
 

 

Table 26: a) Relative change of production volume, producer market price, export and import volume 
of milk for EU-28 and rest of Europe at a 50 USD/tCo2eq price in EU only (EU 50) and globally (WORLD 
50) with new MACs with novel technologies. b)  Relative change of CH4, CO2, N2O, and CO2eq 
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emissions for EU-28 and the Rest of Europe at a 50 USD/tCo2eq price in EU only (EU 50) and globally 
(WORLD 50) with new MACs with novel technologies. 

a) 

b) 

 

7.5.3.5 Technological Change Impact 

Calibrated on FarmDyn simulations output, shifts in the MACC composition (i.e., increase in 

the potential country-specific mitigation power) are demonstrated to have a significant 

impact. Indeed, as shown in Table 27, all the European countries show economic 
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improvements due to the implementation of the new technology. While in the rest of Europe, 

where the new technology is not implemented, production and exports decrease, and import 

dependency increase, all the European countries, with the notable exception of Lithuania, 

successfully achieve an additional 50% reduction of both CH4 and CO2 equivalent emissions 

relative to milk production.  

 

Table 27 a) Relative change of production volume, producer market price, export and import volume of milk 

for EU-28 and rest of Europe at a 50 USD/tCo2eq price for Europe only (EU 50) and globally (WORLD 50) 
with new MACs with novel technologies. b) Relative change of CH4, CO2, N2O, and CO2eq emissions for EU-

28 and the Rest of Europe at a 50 USD/tCo2eq price for Europe only (EU 50) and globally (WORLD 50) with 

new MACs with novel technologies. 

a) 

 

Production Volume 
  

Producer Market Price 
  

Exports Volume 
  

Imports Volume 
  

 WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC 

EU28 0,88 0,89 -2,30 -2,45 15,58 14,23 -8,71 -8,87 

REU -0,24 -0,23 -0,10 -0,12 -2,51 -3,44 2,74 0,02 

AUT 1,08 1,07 -2,37 -2,50 13,69 13,95 -4,58 -6,18 

BLX 0,69 1,27 -3,71 -3,77 26,54 27,29 -17,36 -19,73 

BGR 1,42 1,33 -3,89 -4,16 28,44 30,45 -8,44 -9,86 

HRV 2,50 2,40 -6,13 -6,33 50,98 53,39 -9,57 -12,94 

CZE 0,71 0,69 -1,63 -1,73 7,98 8,01 -2,46 -4,27 

DNK 0,83 0,85 -1,91 -2,11 10,48 11,78 -3,80 -5,07 

EST 0,85 0,79 -2,98 -3,10 20,09 20,81 -7,68 -8,64 

FIN 0,62 0,60 -1,84 -1,97 11,00 11,13 -3,60 -5,18 

FRA 0,73 0,72 -2,62 -2,81 15,67 15,06 -6,53 -7,76 

DEU 1,06 1,10 -2,31 -2,46 14,39 14,54 -4,62 -5,93 

HUN 0,79 0,76 -2,87 -3,04 18,29 19,30 -5,77 -7,91 

IRL 6,98 7,20 -4,44 -4,76 34,78 37,93 -4,37 -3,35 

ITA 0,55 0,52 -3,06 -3,16 20,55 20,87 -7,45 -8,72 

LVA 0,00 0,09 -0,77 -1,04 2,15 3,33 -0,87 -2,83 

LTU -0,57 -0,61 -0,45 -0,48 -0,36 -1,20 -0,08 -1,64 

NLD 1,51 1,51 -2,46 -2,70 14,42 14,34 -5,02 -6,75 

POL 0,96 0,97 -2,83 -2,98 18,30 19,17 -6,93 -8,05 

PRT 0,46 0,43 -2,22 -2,45 12,78 13,78 -4,98 -6,79 

ROU 0,95 0,98 -2,71 -2,91 17,06 17,98 -6,02 -8,27 

SVK -0,23 -0,20 -1,88 -2,07 9,17 10,22 -3,14 -5,80 

SVN 1,56 1,62 -3,66 -3,92 24,39 26,32 -7,53 -9,43 

ESP 0,28 0,24 -2,19 -2,29 12,58 12,56 -5,47 -6,42 

SWE 0,54 0,55 -1,86 -1,99 11,25 11,94 -3,86 -5,07 

b) 
       

 

CH4 Emissions   CO2 emissions   N2O Emissions   CO2 Eq emissions 
  

 WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC WORLD_50_MAC EU_50_MAC 

EU28 -50,50 -49,60 2,84 2,89 1,27 1,27 -37,80 -37,20 

REU -0,20 -0,20 -0,25 -0,23 -0,24 -0,23 -0,20 -0,20 

AUT -52,30 -52,30 2,73 2,73 3,14 3,13 -39,70 -39,70 

BLX -56,70 -56,40 2,85 3,51 -0,08 0,,494 -43,10 -42,80 

BGR -55,40 -55,40 4,13 4,10 -1,58 -1,66 -44,70 -44,80 

HRV -56,10 -56,10 6,17 6,12 1,01 0,92 -40,10 -40,20 

CZE -55,40 -55,40 2,15 2,16 4,63 4,61 -44,10 -44,20 

DNK -56,90 -56,90 2,63 2,57 2,35 2,36 -43,30 -43,30 

EST -56,50 -56,60 3,17 3,13 0,82 0,76 -34,50 -34,50 

FIN -54,30 -54,30 1,57 1,59 1,81 1,79 -34,10 -34,10 

FRA -55,80 -55,80 2,57 2,59 -2,15 -2,16 -42,70 -42,70 
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DEU -56,50 -56,40 3,19 3,27 0,67 0,71 -43,30 -43,30 

HUN -55,70 -55,70 2,50 2,50 -4,25 -4,28 -44,90 -45,00 

IRL -53,30 -53,20 10,99 11,33 5,54 5,75 -33,80 -33,60 

ITA -57,60 -57,60 2,38 2,38 1,40 1,38 -44,30 -44,30 

LVA -54,60 -54,60 2,38 2,54 2,11 2,20 -37,70 -37,60 

LTU -2,40 -2,40 -0,53 -0,56 -0,14 -0,18 -1,90 -1,90 

NLD -57,40 -57,50 3,18 3,23 0,06 0,05 -43,50 -43,50 

POL -56,20 -56,20 3,22 3,26 0,87 0,88 -40,50 -40,50 

PRT -56,50 -56,60 2,23 2,24 1,82 1,79 -45,20 -45,20 

ROU -55,60 -55,60 2,64 2,71 1,28 12,87 -45,60 -45,60 

SVK -56,60 -56,60 1,68 1,76 -1,10 -1,07 -45,80 -45,80 

SVN -56,10 -56,00 4,59 4,71 1,41 1,47 -41,70 -41,70 

ESP -58,80 -58,80 1,62 1,61 12,00 11,96 -44,90 -45,00 

SWE -56,50 -56,50 1,97 2,01 1,51 1,52 -38,20 -38,20 

Remark: The emissions changes due to new technology implementations (lower half of the table) have inverted 
colours (green for negative values and red for positive) as lowering emissions with respect to the no-tech scenario 
is considered a positive impact.  

7.5.3.6 Strengths and Weaknesses of FarmDyn/Magnet Coupling 

Several challenges emerged in updating the MAC curves with FarmDyn data, specifically 

considering the technology change. In FarmDyn, technological shifts are the preferential 

response to the introduction of a carbon tax, i.e., if a tax is implemented, farmers try to avoid 

paying it as much as they can, shifting to different input and/or more emission-efficient 

production techniques if available. This is not the case in MAGNET. The model is built by 

default to increase the product price by a tax, leading to an equivalent abatement/reduction 

in emission intensity. Technological changes can only be handled if exogenous data are 

available, varying the intercept and slope of the (linear) MAC curve, which defines the 

behaviour of the abatement reaction for each carbon tax, as it was performed in the case of 

Bovaer® and extended lactation implementation in this deliverable. This relates to evident 

challenges in implementing FarmDyn inputs in MAGNET, as they require further elaboration 

from the basic standard response to match (at least in the baseline) the MAGNET 

characteristic (only tax impacts). The spatial resolution of the model FarmDyn is the single 

farm with a dataset for farms at the European level, while MAGNET is global. This introduces 

a series of issues since, in FarmDyn, responses to tax outside Europe and import/export 

decisions are not relevant, while trade is one of the main driving forces in MAGNET. Significant 

differences emerge due to international specialization decisions and substantial changes in 

the implication of the same carbon tax in Europe if the tax is also applied (or not) to the rest 

of the world, see Table 25, Table 26, and Table 27.  

 

Nevertheless, the soft link with Farm-Dyn provides the possibility to have more sub-regional 

detail at the European level (which is critical in highlighting sub-regional production and 

mitigation choices) and the possibility to evaluate the impacts of new technologies 

implementation as the Bovaer® and extended lactation implementation that was tested in this 

case study. The coupling of this model, though it carries challenges, has proven to be a 

significant effort since it expands the realism, precision, and scenario possibility (i.e., the 
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introduction of technologies, absent in the beginning) that the macroeconomic model can 

perform.  

 

7.6 Discussion and concluding remarks 

The primary objective of this section is to explore options to improve the representation of 

mitigation measures in macroeconomic models using the single-farm level model FarmDyn. 

Based on the findings of farmers' adoption behaviour of mitigation measures in Task 3.3, this 

task assesses the impact of the mitigation measure portfolio extension in the explicit 

representation (single add-on technologies) in GLOBIOM and the implicit representation (MAC 

curves) in MAGNET, respectively. Rooted in the modular structure idea of an IDM (Task 3.2), 

the versatility of FarmDyn allows it to deal with various kinds of requirements posed by the 

linkage to different kinds of macro-models, such as the partial equilibrium model GLOBIOM 

and the computable general equilibrium MAGNET. Derived from these model features, this 

task further investigates the potential application of mitigation measures accounting for farm 

intensity and country-specific GHG emission accounting (GLOBIOM), as well as accounting for 

EU-wide farm heterogeneity in the construction of MAC curves (MAGNET). 

The results for the linkage of FarmDyn to GLOBIOM show that given the national GHG 

accounting schemes of the Dutch and German versions, the GHG emission reduction for the 

mitigation technologies differs slightly. The results based on the differentiation between 

intensive and extensive between the two countries highlight that heterogenous assumptions 

about national GHG accounting and intensity levels can have a huge impact on both GHG 

reduction potential as well as the implied costs, especially when farm interactions and farm 

management options, such as vegetable oil feed or extended lactation are considered. 

Mitigation options with limited impact on the farm (management and other interactions), 

such as Bovaer®, show a more consistent reduction potential and costs across intensities and 

environmental accounting schemes, making them more suitable for extensions in the macro-

models. Considering that this section only looked at dairy farms, the results for both intensities 

and GHG accounting schemes show a significant reduction potential with Bovaer® and 

vegetable oil, with additional emission reductions in Europe between 5-9% for the entire 

agricultural sector compared to the baseline. 

Our results show that FarmDyn can produce data with similar mitigation reduction potential 

and costs compared to the initial MACCs in MAGNET for each of the EU-28 countries based on 

NUTS2-specific average dairy farms. Adding novel mitigation technologies to the construction 

of the MACs corresponds to a technology shock in MAGNET with major implications on 

production, trade, and emissions in the raw milk sector. We see that the reduction in the 

application with MACCs covering implicitly novel technologies reduces the GHG emissions in 

the EU-28 raw milk sector significantly with more than 35% compared to the baseline, which 
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is in the range of the reduction levels in GLOBIOMs EU-28 results. However, the additional 

reduction potential for MAGNET comparing old and new MACCs is substantially higher than 

in GLOBIOM. The scenario assessment emphasizes the importance of defining practical 

boundaries and policies during the setup phase to evaluate the effects of new technologies. 

Specifically, it involves determining the suitable regions for implementing these technologies 

and whether a carbon price should be imposed on all regions or only a select few. 

In conclusion, this section offers valuable insights into the potential to extend the portfolio of 

mitigation measures implicitly and explicitly in macro-scale models using single-farm level 

models. Foremost, the wide range of simulation options in single-farm level models allows to 

establish loose linkages to multiple macro-economic models such as partial equilibrium 

models and computable general equilibrium models. This proof of concept allowed us to 

extend the initial differentiation of mitigation technologies by farm heterogeneity, farm 

intensity, and nationally specific GHG accounting schemes. However, it should be noted that 

this linkage also highlights the challenge posed by limited data availability, which hampers the 

accurate representation of diverse cost structures and marginal abatement costs within the 

single-farm level model. Eventually, further research is warranted to increase the coverage of 

single-farm level models to provide macroeconomic models with a wider range of spatial 

coverage to produce more robust policy assessments of mitigation potential in the agricultural 

sector. 
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8 IMPROVED MARKET POWER PARAMETERS AND 
PRICE TRANSMISSION ELASTICITIES 

As stated in MIND STEP Deliverable 4.4, the potential impact of organizations of producers 

and/or contractual agreements are not adequately represented in traditional New Industrial 

Organization (NEIO) models. Indeed, the majority of the theoretical and empirical literature 

on market power and price transmission currently adopts the assumption of perfect 

competition within markets. This statement is also valid in the context of Computable General 

Equilibrium (CGE) models. Indeed, even if some features mimicking aspects of market 

imperfections have been already introduced for a very long time (Harris, 1984; Harrison et al., 

1997) and there is a substantial sub-strand of the CGE literature addressing this issue, inspired 

by Melitz’s theoretical framework (Melitz, 2003), CGEs, in general, are mostly still using the 

defaults sets of assumptions, i.e., perfect competition, price-taking stakeholders, no costs of 

entry/exit from markets, market clearing and zero profit for firms. In particular, a standard 

assumption is the Armington assumption (Armington, 1969), which postulates that goods 

produced in different countries are imperfect substitutes, meaning that goods in the same 

region are more easily substituted with each other than imported ones. Imperfect competition 

of domestic vs. foreign is already accounted for standardly. Lifting the assumption of perfect 

competition can be fundamental for a more realistic assessment of policies and properly 

quantifying their effective macroeconomic and trade impacts. The data required for 

implementing Imperfect competition in CGE concerns assumptions about strategic behaviour, 

expectations and limits to market entry, price discrimination, product differentiations, and 

computation of the perceived demand elasticities in mark-up equations (Roson, 2006). In 

particular, the following modifications are required, depending on the choice of an explicit or 

implicit integration: 

A. Implicit: The effect of heterogeneity is implicitly represented by shifts in the Armington 

taste (elasticity) parameters while maintaining the  CES-based  Armington structure 

(Zhai, 2008). Indeed, there are papers, e.g. (Dixon et al., 2016), which state that it is 

not required to implement a Melitz model in CGEs since Armington models can 

replicate their trade impacts by adjusting the usual elasticities of substitution. As such, 

different approaches have been applied to achieve a more realistic representation of 

overall trade effects, also driven by real-life firm heterogeneity, without explicitly 

implementing heterogeneous firms in the models. For example, Dixon and Rimmer 

(2002) uses a calibration on the Armington based on historical data, while Kuiper and 

Van Tongeren (2006) shift the  Armington taste parameters exogenously based on 

estimated econometric gravity equations.  

B. Explicit: First, this choice requires data inputs on firms' unitary profits or firm-specific 

mark-ups, the number of firms and the respective production level, industry elasticity 
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values, and data on economies of scale. Nevertheless, the minimum assumptions 

necessary to implement imperfect competition are the following25: 

 

Data on the firm value added/production level and resource use to split the original 

representing firm into its heterogeneous component.  

 

Choices on the Perceived Price Elasticities. In the mainstream setting, demand and perceived 

price elasticity (PPE) coincide. This follows the assumption that if only one firm exists (and 

there is perfect competition and no return to scale), the price is set up to be equivalent to the 

marginal cost, which is also equivalent to the average costs. Being just one firm available, a 

price change entails a variation embodied in the percentage change in demand induced by the 

price change in the object. In imperfect competition, the price is not necessarily equivalent to 

the marginal costs, but their relationship is weighted by the PPE. As such, the PPE embodies 

the competitor’s reaction to a price change of the price-setting firm, which can inflate or 

deflate the final impact on the competitors' prices. This is the minimum to define the 

heterogenous’ firms' behaviour.  

 

One option is to calibrate this elasticity, as Jafari and Britz (2018) suggested. In this context, 

heterogeneity in firms is introduced based on a parameter λ (share parameter) representing 

some preference weights calibrated on the variety of production in the single regions. This 

allows for a differentiation between products by origin, as in the Armington, adding the love 

of variety effect. Since the quantity equation is modified, the price equation also needs to be 

adapted. Applying the share to the price computation for all the varieties results in the 

computation of the average price variety per firm, which is then reaggregated in the total 

variety price change. Furthermore, this technique is applied to estimate the demand for 

specific shares of production as intermediate inputs in each sector as part of the model 

functioning. In summary, they use some empirical weights to split the original production into 

different variety subsets. Nevertheless, different perceived elasticities calibration can vary 

under different assumptions, e.g., oligopolistic interaction (Willenbockel, 2004).  

 

Definition of market. In general, CGEs are based on two criteria: origin (domestic, foreign) and 

level (intermediate or final consumption). In particular, the relationship in the first category is 

determined by Armington's assumption. On this basis, implementing imperfect competition 

requires adaptation of these dimensions to perceive multiple firms. There are two ways to do 

 

25 Indeed, there are also other parameters such as assumption on the entry/exit market costs and 
economies of scale, though while they can be influenced by the presence of the explicit representation 
of firm heterogeneity in the model, are not condictio sine qua non to implement it (Roson, 2006).   
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this. The first is to assume that the role of imperfect competitors is relevant only in the 

domestic context (meaning that within all the single regions, the firms compete as different 

products). This means just adding another layer to the (domestic) demand structure. The 

second is to relax the Armington standard assumption, allowing for all products of all firms to 

compete (e.g., Akgul et al., 2016; Swaminathan and Hertel, 1997). 

 

As such, the most challenging issue in introducing heterogeneity in a CGE resides in estimating 

the difference between firm prices and marginal costs, which is assumed to be zero in the 

standard model. From the literature, it emerges that this can be done by splitting by 

heterogeneous firm values and then calibrating through PPE estimates. Therefore, we expect 

to adopt the methodology described in Deliverable 4.4 as an empirical basis for estimating the 

price differentiation factor to introduce heterogeneity in the model in the future. 
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9 CONCLUSIONS 
In conclusion, this deliverable (D5.2) highlights the technical advancements made in the MIND 

STEP modelling toolbox. The focus is on improving existing EU-wide and global models used 

by the European Commission, with an emphasis on harmonizing production systems, 

enhancing the representation of farm types, calibrating behavioural parameters, 

incorporating structural changes, improving risk representation, assessing greenhouse gas 

emissions, and enhancing market power parameters and price transmission elasticities. These 

improvements aim to provide more accurate and comprehensive assessments of European 

agricultural production systems and their responses to various factors. 

 

The deliverable outlines the work within the main subtasks of the project, showcasing the 

specific enhancements made in each section. Notable achievements include the 

harmonization of production systems and farm typologies, the calibration of behavioural 

parameters in macro-level models, the representation of structural changes in current 

models, the integration of risk representation in GLOBIOM, the assessment of greenhouse gas 

emissions using micro and macro-level models, and the enhancement of market power 

parameters and price transmission elasticities in CAPRI and MAGNET models. These 

advancements pave the way for improved policy evaluation and scenario assessments, 

providing valuable insights for decision-makers in the agricultural sector. 
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12 ANNEX 
Table A1 Mapping between GLOBIOM Land use classification and CLC level 3 classification. 

GLOBIOM Land use 
classification 

CLC level 3 classification 

Urban Continuous urban fabric 

Urban Discontinuous urban fabric 

Urban Industrial or commercial units 

Urban Road and rail networks and associated land 

Urban Port areas 

Urban Airports 

Urban Mineral extraction sites 

Urban Dump sites 

Urban Construction sites 

Urban Green urban areas 

Urban Sports and leisure facilities 

CrpLnd Non-irrigated arable land 

CrpLnd Permanently irrigated land 

CrpLnd Rice fields 

OthAgri Vineyards 

OthAgri Fruit trees and berry plantations 

OthAgri Olive groves 

GrsLnd Pastures 

OthAgri Annual crops associated with permanent crops 

OthAgri Complex cultivation patterns 

OthAgri Land principally occupied by agriculture with significant areas of 
natural vegetation 

OthAgri Agro-forestry areas 

Forest Broad-leaved forest 

Forest Coniferous forest 

Forest Mixed forest 

OthNatLnd Natural grasslands 

OthNatLnd Moors and heathland 

OthNatLnd Sclerophyllous vegetation 

OthNatLnd Transitional woodland-shrub 

NotRel Beaches dunes sands 

NotRel Bare rocks 

NotRel Sparsely vegetated areas 

NotRel Burnt areas 
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NotRel Glaciers and perpetual snow 

NotRel Inland marshes 

NotRel Peat bogs 

NotRel Salt marshes 

NotRel Salines 

NotRel Intertidal flats 

NotRel Water courses 

NotRel Water bodies 

NotRel Coastal lagoons 

NotRel Estuaries 

NotRel Sea and ocean 

NotRel NO DATA 

 

Table A2 GLOBIOM’s FAOSTAT derived data over items, variables, and units.  

Item Variable Unit 

Barley (BARL) 

Corn (CORN) 

Wheat (WHEA) 

Rapeseed (RAPE) 

Rice (RICE) 

Soya (SOYA) 

Sunflower Seed (SUNF) 

Sugar Cane (SUGC) 

Oil Palm (OPAL) 

Bovine Meat (BVMEAT) 

Pig Meat (PGMEAT) 

Poultry Meat (PTMEAT) 

Sheep and Goat Meat 
(SGMEAT) 

Almond Milk (ALMILK) 

Poultry Eggs (PTEGGS) 

Export (EXPO) 

Feed (FEED) 

Food (FOOD) 

Import (IMPO) 

Net Import (NETT) 

Other use (OTHU) 

Production (PROD) 

Price in US dollar per ton (XPRP USD 2000) 

Yield (YILD) 

 

1000 ha 

1000 t 

Per ton 

fm t/ha 

 

Cropland (CRPLND) Land area (LAND) 1000 ha 
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Table A3: Mapping between GLOBIOM regions and countries  

GLOBIOM region Country 

Argentina Argentina 

Australia Australia 

Brazil Brazil 

Canada Canada 

China China 

Congo Basin The Gabon 

Equatorial Guinea 

Republic of the Congo 

Democratic Republic of the Congo 

Cameroon 

Central African Republic 

Eastern Africa Tanzania 

Kenya 

Ethiopia 

Uganda 

Burundi 

Rwanda 

EU Baltic Latvia 

Lithuania 

Estonia 

EU Central-East Poland 

CzechRep 

Slovakia 

Hungary 

Slovenia 

Croatia 

Romania 

Bulgaria 
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EU Mid-West France 

Belgium 

Netherlands 

Luxembourg 

Germany 

Austria 

EU North UK 

Denmark 

Sweden 

Finland 

Ireland 

EU South Spain 

Portugal 

Italy 

Greece 

Cyprus 

Malta 

Former USSR Belarus 

Kazakhstan 

Azerbaijan 

Turkmenistan 

Uzbekistan 

Moldova 

Georgia 

Armenia 

Tajikistan 

Kyrgyzstan 

India India 

Indonesia Indonesia 

Japan Japan 

Malaysia Malaysia 

Mexico Mexico 
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Middle East Iraq 

Yemen 

Saudi Arabia 

Kuwait 

Iran 

Qatar 

United Arab Emirates 

Oman 

Israel 

Lebanon 

Jordan 

Syria 

Bahrain 

New Zealand New Zealand 

Northern Africa West Sahara 

Morocco 

Algeria 

Tunisia 

Libya 

Egypt 

Pacific Islands 

 

 

 

 

 

Samoa 

Papua New Guinea 

Solomon Islands 

New Caledonia 

Vanuatu 

Fiji-I ands 
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Rest of Central America 

 

El Salvador 

Costa Rica 

Panama 

Guatemala 

Belize 

Honduras 

Nicaragua 

Cuba 

Bahamas 

Jamaica 

Haiti 

Dominican Republic 

Guadeloupe 

Trinidad and Tobago 

Rest of Central Europe (RCEU) Bosnia and Herzegovina 

Serbia 

Montenegro 

Albania 

Macedonia 

Rest of Western Europe (ROWE) Iceland 

Norway 

Switzerland 

Greenland 
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Rest of South America Ecuador 

Peru 

Chile 

Bolivia 

Guyana 

Suriname 

Paraguay 

Uruguay 

French Guiana 

Colombia 

Venezuela 

Falkland Islands 

Rest of South Asia Pakistan 

Sri Lanka 

Nepal 

Bangladesh 

Bhutan 

Rest of South East Asia Thailand 

Philippines 

Myanmar 

Brunei Darussalam 

Timor-Leste 

Singapore 

Vietnam 

Laos 

Cambodia 

DPR Korea 

Mongolia 

Russia  Russian Federation 

South Africa South Africa 
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Rest of Southern Africa Angola 

Namibia 

Zimbabwe 

Mozambique 

Madagascar 

Swaziland 

Malawi 

Mauritius 

Reunion 

Comoros 

Zambia 

Botswana 

Lesotho 

South Korea South Korea 

Turkey Turkey 

Ukraine Ukraine 

USA Region USA 

Puerto Rico 



 
D5.2 REPORT ON IMPROVEMENTS TO THE CURRENT EU AND GLOBAL MODELS  

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

 
161 

 

 

 

 

 

i  

Western Africa Mauritania 

Senegal 

Mali 

CotedIvoire 

BurkinaFaso 

Ghana 

Niger 

Benin 

Nigeria 

Chad 

Sudan 

Somalia 

Djibouti 

CapeVerde 

Gambia 

GuineaBissau 

Guinea 

SierraLeone 

Liberia 

Togo 

Eritrea 


